Towards Context-Aware Mobile Crowdsensing in Vehicular Social Networks

Xiping Hu, Victor C. M. Leung
{"title":"Towards Context-Aware Mobile Crowdsensing in Vehicular Social Networks","authors":"Xiping Hu, Victor C. M. Leung","doi":"10.1109/CCGrid.2015.155","DOIUrl":null,"url":null,"abstract":"Driving is an integral part of our everyday lives, and the average driving time of people globally is increasing to 84 minutes everyday, which is a time when people are uniquely vulnerable. A number of research works have identified that mobile crowd sensing in vehicular social networks (VSNs) can be effectively used for many purposes and bring huge economic benefits, e.g., safety improvement and traffic management. This paper presents our effort that toward context-aware mobile crowd sensing in VSNs. First, we introduce a novel application-oriented service collaboration (ASCM) model which can automatically match multiple users with multiple mobile crowd sensing tasks in VSNs in an efficient manner. After that, for users' dynamic contexts of VSNs, we proposes a context information management model, that aims to enable the mobile crowd sensing applications to autonomously match appropriate service and information with different users (requesters and participants) in crowdsensing.","PeriodicalId":6664,"journal":{"name":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","volume":"72 1","pages":"749-752"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2015.155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Driving is an integral part of our everyday lives, and the average driving time of people globally is increasing to 84 minutes everyday, which is a time when people are uniquely vulnerable. A number of research works have identified that mobile crowd sensing in vehicular social networks (VSNs) can be effectively used for many purposes and bring huge economic benefits, e.g., safety improvement and traffic management. This paper presents our effort that toward context-aware mobile crowd sensing in VSNs. First, we introduce a novel application-oriented service collaboration (ASCM) model which can automatically match multiple users with multiple mobile crowd sensing tasks in VSNs in an efficient manner. After that, for users' dynamic contexts of VSNs, we proposes a context information management model, that aims to enable the mobile crowd sensing applications to autonomously match appropriate service and information with different users (requesters and participants) in crowdsensing.
面向车载社交网络的情境感知移动人群感知
驾驶是我们日常生活中不可或缺的一部分,全球人们的平均驾驶时间正在增加到每天84分钟,这是人们特别脆弱的时候。大量研究表明,车辆社交网络(VSNs)中的移动人群传感可以有效地用于许多目的,并带来巨大的经济效益,例如提高安全性和交通管理。本文介绍了我们在虚拟网络环境感知移动人群感知方面所做的努力。首先,我们引入了一种新的面向应用的服务协作(ASCM)模型,该模型可以有效地自动匹配多个用户和多个移动人群感知任务。在此基础上,针对虚拟社交网络用户的动态情境,提出了情境信息管理模型,使移动人群感知应用能够自主地为不同的人群感知用户(请求者和参与者)匹配合适的服务和信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信