Underwater Sonar and Aerial Images Data Fusion for Robot Localization

M. Santos, G. G. Giacomo, Paulo L. J. Drews-Jr, S. Botelho
{"title":"Underwater Sonar and Aerial Images Data Fusion for Robot Localization","authors":"M. Santos, G. G. Giacomo, Paulo L. J. Drews-Jr, S. Botelho","doi":"10.1109/ICAR46387.2019.8981586","DOIUrl":null,"url":null,"abstract":"Autonomous underwater navigation is a challenging problem because of the limitations imposed by aquatic environments. Among them, the use of Global Positioning System (GPS) is severely limited. Thus, we propose the use of sensor fusion to improve underwater localization in partially structured environments. We sustain our proposal explores the benefits of aerial images, such as georeferencing, to improve underwater navigation with a multibeam forward looking sonar. Our methodology combines state-of-the-art approaches such as Deep Neural Networks and Adaptive Monte Carlo Localization to fuse data from different image domains. The obtained results show a significant improvement over traditional odometry for underwater localization.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"45 1","pages":"578-583"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Autonomous underwater navigation is a challenging problem because of the limitations imposed by aquatic environments. Among them, the use of Global Positioning System (GPS) is severely limited. Thus, we propose the use of sensor fusion to improve underwater localization in partially structured environments. We sustain our proposal explores the benefits of aerial images, such as georeferencing, to improve underwater navigation with a multibeam forward looking sonar. Our methodology combines state-of-the-art approaches such as Deep Neural Networks and Adaptive Monte Carlo Localization to fuse data from different image domains. The obtained results show a significant improvement over traditional odometry for underwater localization.
水下声纳与航空图像数据融合用于机器人定位
由于水下环境的限制,自主水下导航是一个具有挑战性的问题。其中,全球定位系统(GPS)的使用受到严重限制。因此,我们建议使用传感器融合来改善部分结构化环境中的水下定位。我们的提案探讨了航空图像的好处,例如地理参考,以改善多波束前视声纳的水下导航。我们的方法结合了最先进的方法,如深度神经网络和自适应蒙特卡罗定位,以融合来自不同图像域的数据。所得结果表明,该方法在水下定位方面比传统的测距法有了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信