Kunshan Xu, Ke Yang, Jie Liu, Xiaoping Chen, Yue Wang
{"title":"Investigation of Magnetic Memory Signal of Propagation of Buried Crack under Applied Load","authors":"Kunshan Xu, Ke Yang, Jie Liu, Xiaoping Chen, Yue Wang","doi":"10.1080/09349847.2020.1817640","DOIUrl":null,"url":null,"abstract":"ABSTRACT The timely detection of crack defects considerably helps prevent accidents caused by metal component failure. Further, magnetic memory detection technology has the advantage of detecting damage earlier than traditional nondestructive testing technology; however, the relationship between magnetic memory fields and welding cracks needs to be studied. Specimens with buried welding cracks were fabricated to study the magnetic memory field parameters of the propagation process of welding cracks. Variations in the magnetic memory signals of the crack at different loading stages were characterized. The magnetic memory detection method can effectively detect the buried welding crack defects. The magnetic field intensity gradient (dH/dx) demonstrated a regular change with the increase in the applied tensile load (P), which can be considered in two stages: In the first stage (P < 120 kN), dH/dx gradually decreased with P, and in the second stage (P > 120 kN), it rapidly increased before fracture.","PeriodicalId":54493,"journal":{"name":"Research in Nondestructive Evaluation","volume":"104 1","pages":"1 - 9"},"PeriodicalIF":1.0000,"publicationDate":"2020-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09349847.2020.1817640","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 4
Abstract
ABSTRACT The timely detection of crack defects considerably helps prevent accidents caused by metal component failure. Further, magnetic memory detection technology has the advantage of detecting damage earlier than traditional nondestructive testing technology; however, the relationship between magnetic memory fields and welding cracks needs to be studied. Specimens with buried welding cracks were fabricated to study the magnetic memory field parameters of the propagation process of welding cracks. Variations in the magnetic memory signals of the crack at different loading stages were characterized. The magnetic memory detection method can effectively detect the buried welding crack defects. The magnetic field intensity gradient (dH/dx) demonstrated a regular change with the increase in the applied tensile load (P), which can be considered in two stages: In the first stage (P < 120 kN), dH/dx gradually decreased with P, and in the second stage (P > 120 kN), it rapidly increased before fracture.
期刊介绍:
Research in Nondestructive Evaluation® is the archival research journal of the American Society for Nondestructive Testing, Inc. RNDE® contains the results of original research in all areas of nondestructive evaluation (NDE). The journal covers experimental and theoretical investigations dealing with the scientific and engineering bases of NDE, its measurement and methodology, and a wide range of applications to materials and structures that relate to the entire life cycle, from manufacture to use and retirement.
Illustrative topics include advances in the underlying science of acoustic, thermal, electrical, magnetic, optical and ionizing radiation techniques and their applications to NDE problems. These problems include the nondestructive characterization of a wide variety of material properties and their degradation in service, nonintrusive sensors for monitoring manufacturing and materials processes, new techniques and combinations of techniques for detecting and characterizing hidden discontinuities and distributed damage in materials, standardization concepts and quantitative approaches for advanced NDE techniques, and long-term continuous monitoring of structures and assemblies. Of particular interest is research which elucidates how to evaluate the effects of imperfect material condition, as quantified by nondestructive measurement, on the functional performance.