{"title":"Toward In-situ Characterization of Additively Manufactured Parts Using Nonlinear Resonance Ultrasonic Spectroscopy","authors":"P. Manogharan, J. Rivière, P. Shokouhi","doi":"10.1080/09349847.2022.2103219","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study, we investigate the feasibility of using nonlinear resonance ultrasound spectroscopy (NRUS) for in-situ monitoring of additively manufactured (AM) parts i.e., while they are still on the build plate. In NRUS, the test specimen is excited around one or more of its resonance frequencies with increasing driving amplitude. The linear shift in resonance frequency with the increasing driving amplitude is a measure of the constituent material’s hysteretic nonlinearity (α), which is itself related to some degree of micro-damage in the test specimens. We conduct NRUS on test specimens glued to a thick plate. The specimens are excited using a piezoelectric transducer (PZT) adhered to the bottom of the plate. We use this setup to measure the hysteretic nonlinearity parameters ( and ) of several cylindrical AM specimens fabricated by laser powder bed fusion technique as well as a few non-AM metallic specimens. The measured nonlinearity parameters for the specimens on the build plate (process monitoring mode) are compared to those measured without the build plate (quality control mode). We observe a systematic decrease in the measured nonlinearity when the specimens are tested on the build plate. An analytical study demonstrates that we measure the weighted average nonlinearity of the specimen and build plate, which itself has a lower nonlinearity. Despite the observed difference, the measured nonlinearity parameters of the specimens with and without the build plate are highly correlated. With further investigations, the proposed test setup can potentially be used for characterization of AM parts in situ.","PeriodicalId":54493,"journal":{"name":"Research in Nondestructive Evaluation","volume":"44 1","pages":"243 - 266"},"PeriodicalIF":1.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09349847.2022.2103219","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 3
Abstract
ABSTRACT In this study, we investigate the feasibility of using nonlinear resonance ultrasound spectroscopy (NRUS) for in-situ monitoring of additively manufactured (AM) parts i.e., while they are still on the build plate. In NRUS, the test specimen is excited around one or more of its resonance frequencies with increasing driving amplitude. The linear shift in resonance frequency with the increasing driving amplitude is a measure of the constituent material’s hysteretic nonlinearity (α), which is itself related to some degree of micro-damage in the test specimens. We conduct NRUS on test specimens glued to a thick plate. The specimens are excited using a piezoelectric transducer (PZT) adhered to the bottom of the plate. We use this setup to measure the hysteretic nonlinearity parameters ( and ) of several cylindrical AM specimens fabricated by laser powder bed fusion technique as well as a few non-AM metallic specimens. The measured nonlinearity parameters for the specimens on the build plate (process monitoring mode) are compared to those measured without the build plate (quality control mode). We observe a systematic decrease in the measured nonlinearity when the specimens are tested on the build plate. An analytical study demonstrates that we measure the weighted average nonlinearity of the specimen and build plate, which itself has a lower nonlinearity. Despite the observed difference, the measured nonlinearity parameters of the specimens with and without the build plate are highly correlated. With further investigations, the proposed test setup can potentially be used for characterization of AM parts in situ.
期刊介绍:
Research in Nondestructive Evaluation® is the archival research journal of the American Society for Nondestructive Testing, Inc. RNDE® contains the results of original research in all areas of nondestructive evaluation (NDE). The journal covers experimental and theoretical investigations dealing with the scientific and engineering bases of NDE, its measurement and methodology, and a wide range of applications to materials and structures that relate to the entire life cycle, from manufacture to use and retirement.
Illustrative topics include advances in the underlying science of acoustic, thermal, electrical, magnetic, optical and ionizing radiation techniques and their applications to NDE problems. These problems include the nondestructive characterization of a wide variety of material properties and their degradation in service, nonintrusive sensors for monitoring manufacturing and materials processes, new techniques and combinations of techniques for detecting and characterizing hidden discontinuities and distributed damage in materials, standardization concepts and quantitative approaches for advanced NDE techniques, and long-term continuous monitoring of structures and assemblies. Of particular interest is research which elucidates how to evaluate the effects of imperfect material condition, as quantified by nondestructive measurement, on the functional performance.