Ferrimagnetic ceramic adsorbents for cleanup of H2S from exhaust gases

Bernd Halbedel , Apostolos Kontogeorgakos
{"title":"Ferrimagnetic ceramic adsorbents for cleanup of H2S from exhaust gases","authors":"Bernd Halbedel ,&nbsp;Apostolos Kontogeorgakos","doi":"10.1016/j.cpart.2007.01.002","DOIUrl":null,"url":null,"abstract":"<div><p>Adsorbents that exhibit magnetic properties in addition to other required process-relevant characteristics open up new perspectives for the dry reduction and/or elimination of H<sub>2</sub>S and other sulfur compounds from exhaust gases. These adsorbents eliminate the sulfur compounds from exhaust gases by virtue of their coatings and their magnetic property which makes it possible the use of magnetically assisted and stabilized fluidization in an externally applied magnetic field.</p><p>In the present paper, the feasibility of the sorptive function of porous ceramic ferrimagnetic beads is ensured by sol–gel coating of zinc oxide without the formation of Zn–Fe-oxides and without considerable decrease of available pore volume. The results of material characterization by SEM, Auger electron spectroscopy, X-ray and mercury-porosity measurements and the loading capacity of a H<sub>2</sub>S/N<sub>2</sub> model gas are presented and discussed. The resulting H<sub>2</sub>S loading of the functionalized adsorbent beads is more than 10 times larger than that of the starting material.</p></div>","PeriodicalId":100239,"journal":{"name":"China Particuology","volume":"5 1","pages":"Pages 156-161"},"PeriodicalIF":0.0000,"publicationDate":"2007-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cpart.2007.01.002","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Particuology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672251507000073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Adsorbents that exhibit magnetic properties in addition to other required process-relevant characteristics open up new perspectives for the dry reduction and/or elimination of H2S and other sulfur compounds from exhaust gases. These adsorbents eliminate the sulfur compounds from exhaust gases by virtue of their coatings and their magnetic property which makes it possible the use of magnetically assisted and stabilized fluidization in an externally applied magnetic field.

In the present paper, the feasibility of the sorptive function of porous ceramic ferrimagnetic beads is ensured by sol–gel coating of zinc oxide without the formation of Zn–Fe-oxides and without considerable decrease of available pore volume. The results of material characterization by SEM, Auger electron spectroscopy, X-ray and mercury-porosity measurements and the loading capacity of a H2S/N2 model gas are presented and discussed. The resulting H2S loading of the functionalized adsorbent beads is more than 10 times larger than that of the starting material.

用于清除废气中硫化氢的铁磁陶瓷吸附剂
吸附剂具有磁性和其他所需的工艺相关特性,为干燥还原和/或消除废气中的H2S和其他含硫化合物开辟了新的前景。这些吸附剂通过其涂层和磁性去除废气中的硫化合物,这使得在外部施加的磁场中使用磁辅助和稳定的流化成为可能。在本文中,通过氧化锌的溶胶-凝胶涂层来保证多孔陶瓷铁磁珠吸附功能的可行性,而不会形成锌-铁氧化物,也不会显著减少可用孔隙体积。介绍并讨论了材料的SEM、俄歇能谱、x射线和汞孔隙度测量的表征结果以及H2S/N2模型气体的承载能力。结果表明,功能化吸附珠的硫化氢负荷是原料的10倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信