Prediction of the Contrast between Target and Background based on an Improved Support Vector Machine

IF 1.5 Q3 AUTOMATION & CONTROL SYSTEMS
Junbo Liao, Hongxue Yuan, Huiru Zhong, Heng Li, Xin Cai, Jian Li, Yuliang Zhao
{"title":"Prediction of the Contrast between Target and Background based on an Improved Support Vector Machine","authors":"Junbo Liao, Hongxue Yuan, Huiru Zhong, Heng Li, Xin Cai, Jian Li, Yuliang Zhao","doi":"10.1109/CYBER55403.2022.9907153","DOIUrl":null,"url":null,"abstract":"In this paper, to avoid modeling the characteristic of infrared radiation and contrast between the target and the background, the apparent temperature difference (ATD) between the target and the background is used as an alternative method to evaluate the infrared radiation contrast. For static fixed targets, the ATD mostly depends on the external meteorological factors, which make it reasonable to use the meteorological information to predict the ATD. Thus, a support vector machine (SVM) algorithm based on an improved PSO algorithm is proposed to predict the ATD of two different static targets based on long-term testing. The improved PSO algorithm, called dynamic selection strategy based PSO, is proposed to search the optimal parameters of SVM for improving the performance of SVM. The experimental results show the feasibility and effectiveness of the proposed method.","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cybersystems and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBER55403.2022.9907153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, to avoid modeling the characteristic of infrared radiation and contrast between the target and the background, the apparent temperature difference (ATD) between the target and the background is used as an alternative method to evaluate the infrared radiation contrast. For static fixed targets, the ATD mostly depends on the external meteorological factors, which make it reasonable to use the meteorological information to predict the ATD. Thus, a support vector machine (SVM) algorithm based on an improved PSO algorithm is proposed to predict the ATD of two different static targets based on long-term testing. The improved PSO algorithm, called dynamic selection strategy based PSO, is proposed to search the optimal parameters of SVM for improving the performance of SVM. The experimental results show the feasibility and effectiveness of the proposed method.
基于改进支持向量机的目标与背景对比度预测
为了避免对红外辐射特性和目标与背景对比度进行建模,本文采用目标与背景之间的视温差(ATD)作为评价红外辐射对比度的替代方法。对于静态固定目标,ATD主要依赖于外部气象因素,因此利用气象信息预测ATD是合理的。为此,提出了一种基于改进粒子群算法的支持向量机(SVM)算法,基于长期测试对两个不同静态目标的ATD进行预测。提出了一种改进的粒子群算法,即基于动态选择策略的粒子群算法,用于搜索支持向量机的最优参数,以提高支持向量机的性能。实验结果表明了该方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Cybersystems and Robotics
IET Cybersystems and Robotics Computer Science-Information Systems
CiteScore
3.70
自引率
0.00%
发文量
31
审稿时长
34 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信