A Derivative-Free Decent Method Via Acceleration Parameter for Solving Systems of Nonlinear Equations

A. Halilu, M. K. Dauda, M. Waziri, M. Mamat
{"title":"A Derivative-Free Decent Method Via Acceleration Parameter for Solving Systems of Nonlinear Equations","authors":"A. Halilu, M. K. Dauda, M. Waziri, M. Mamat","doi":"10.31580/ojst.v2i3.931","DOIUrl":null,"url":null,"abstract":"An algorithm for solving large-scale systems of nonlinear equations based on the transformation of the Newton method with the line search into a derivative-free descent method is introduced. Main idea used in the algorithm construction is to approximate the Jacobian by an appropriate diagonal matrix. Furthermore, the step length is calculated using inexact line search procedure. Under appropriate conditions, the proposed method is proved to be globally convergent under mild conditions. The numerical results presented show the efficiency of the proposed method.","PeriodicalId":19674,"journal":{"name":"Open Access Journal of Science and Technology","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Access Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31580/ojst.v2i3.931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

An algorithm for solving large-scale systems of nonlinear equations based on the transformation of the Newton method with the line search into a derivative-free descent method is introduced. Main idea used in the algorithm construction is to approximate the Jacobian by an appropriate diagonal matrix. Furthermore, the step length is calculated using inexact line search procedure. Under appropriate conditions, the proposed method is proved to be globally convergent under mild conditions. The numerical results presented show the efficiency of the proposed method.
一种利用加速度参数求解非线性方程组的无导数体面法
介绍了一种求解大规模非线性方程组的算法,该算法将牛顿法的直线搜索转化为无导数下降法。算法构造的主要思想是用合适的对角矩阵近似雅可比矩阵。此外,采用非精确直线搜索法计算步长。在适当的条件下,证明了该方法在温和条件下是全局收敛的。数值结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信