{"title":"Development of a Micelle Disruption Method","authors":"T. Saji","doi":"10.5650/JOS1996.49.1203","DOIUrl":null,"url":null,"abstract":"Organic pigment thin films were prepared using a surfactant with an azobenzene group (AZPEG) which loses its amphiphilic function by reduction. Electroless plating on base metals was done by immersing base metal plates in an organic pigment dispersion prepared with AZPEG. Contact plating of noble metals was carried out by immersing the substrate and aluminum plates in the pigment dispersion, in which the two plates were short-circuited. Film formation was found to depend on pH of the dispersion and film thickness to increase with immersion time. The rate of film growth depended on the concentration of AZPEG, since free AZPEG hinders the deposition of pigment. Scanning electron micrographs of the film indicated uniform thickness mainly composed of pigment particles. Results of film formation for various kind of pigments are listed. Methods for film reinforcement are proposed.","PeriodicalId":16191,"journal":{"name":"Journal of Japan Oil Chemists Society","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2000-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Japan Oil Chemists Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5650/JOS1996.49.1203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Organic pigment thin films were prepared using a surfactant with an azobenzene group (AZPEG) which loses its amphiphilic function by reduction. Electroless plating on base metals was done by immersing base metal plates in an organic pigment dispersion prepared with AZPEG. Contact plating of noble metals was carried out by immersing the substrate and aluminum plates in the pigment dispersion, in which the two plates were short-circuited. Film formation was found to depend on pH of the dispersion and film thickness to increase with immersion time. The rate of film growth depended on the concentration of AZPEG, since free AZPEG hinders the deposition of pigment. Scanning electron micrographs of the film indicated uniform thickness mainly composed of pigment particles. Results of film formation for various kind of pigments are listed. Methods for film reinforcement are proposed.