Subgroups of arbitrary even ordinary depth

Hayder Abbas Janabi, T. Breuer, E. Horváth
{"title":"Subgroups of arbitrary even ordinary depth","authors":"Hayder Abbas Janabi, T. Breuer, E. Horváth","doi":"10.22108/IJGT.2020.123551.1628","DOIUrl":null,"url":null,"abstract":"We show that for each positive integer $n$, there are a group $G$ and a subgroup $H$ such that the ordinary depth is $d(H, G) = 2n$. This solves the open problem posed by Lars Kadison whether even ordinary depth larger than $6$ can occur.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":"130 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2020.123551.1628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We show that for each positive integer $n$, there are a group $G$ and a subgroup $H$ such that the ordinary depth is $d(H, G) = 2n$. This solves the open problem posed by Lars Kadison whether even ordinary depth larger than $6$ can occur.
任意偶数普通深度的子群
我们证明了对于每一个正整数$n$,存在一个群$G$和一个子群$H$,使得普通深度为$d(H, G) = 2n$。这就解决了Lars Kadison提出的问题,即是否会出现大于$6$的普通深度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信