Autonomously Generating Hints by Inferring Problem Solving Policies

C. Piech, M. Sahami, Jonathan Huang, L. Guibas
{"title":"Autonomously Generating Hints by Inferring Problem Solving Policies","authors":"C. Piech, M. Sahami, Jonathan Huang, L. Guibas","doi":"10.1145/2724660.2724668","DOIUrl":null,"url":null,"abstract":"Exploring the whole sequence of steps a student takes to produce work, and the patterns that emerge from thousands of such sequences is fertile ground for a richer understanding of learning. In this paper we autonomously generate hints for the Code.org `Hour of Code,' (which is to the best of our knowledge the largest online course to date) using historical student data. We first develop a family of algorithms that can predict the way an expert teacher would encourage a student to make forward progress. Such predictions can form the basis for effective hint generation systems. The algorithms are more accurate than current state-of-the-art methods at recreating expert suggestions, are easy to implement and scale well. We then show that the same framework which motivated the hint generating algorithms suggests a sequence-based statistic that can be measured for each learner. We discover that this statistic is highly predictive of a student's future success.","PeriodicalId":20664,"journal":{"name":"Proceedings of the Second (2015) ACM Conference on Learning @ Scale","volume":"129 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"139","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second (2015) ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2724660.2724668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 139

Abstract

Exploring the whole sequence of steps a student takes to produce work, and the patterns that emerge from thousands of such sequences is fertile ground for a richer understanding of learning. In this paper we autonomously generate hints for the Code.org `Hour of Code,' (which is to the best of our knowledge the largest online course to date) using historical student data. We first develop a family of algorithms that can predict the way an expert teacher would encourage a student to make forward progress. Such predictions can form the basis for effective hint generation systems. The algorithms are more accurate than current state-of-the-art methods at recreating expert suggestions, are easy to implement and scale well. We then show that the same framework which motivated the hint generating algorithms suggests a sequence-based statistic that can be measured for each learner. We discover that this statistic is highly predictive of a student's future success.
通过推理问题解决策略自动生成提示
探索学生创作作品的整个步骤序列,以及从数千个这样的序列中出现的模式,是对学习更丰富理解的沃土。在本文中,我们使用历史学生数据自动为Code.org“编程一小时”(据我们所知,这是迄今为止最大的在线课程)生成提示。我们首先开发了一系列算法,可以预测专家老师鼓励学生前进的方式。这样的预测可以形成有效提示生成系统的基础。这些算法在再现专家建议方面比目前最先进的方法更准确,易于实现,而且规模也很好。然后,我们展示了激励提示生成算法的相同框架,提出了一个基于序列的统计,可以为每个学习者进行测量。我们发现,这一统计数据对学生未来的成功有很高的预测作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信