Current and future multicomponent towed streamer design

N. Goujon, S. Rentsch, L. Combee, F. Guizelin, K. F. Ahmad
{"title":"Current and future multicomponent towed streamer design","authors":"N. Goujon, S. Rentsch, L. Combee, F. Guizelin, K. F. Ahmad","doi":"10.1080/22020586.2019.12073228","DOIUrl":null,"url":null,"abstract":"Summary The towed streamer market is moving towards the widespread use of multicomponent streamers. This type of streamer contains hydrophones and particle motion sensors which are used to carry out receiver-side deghosting of the data. The main source of noise on the particle motion sensors is streamer transverse vibration, and it can be challenging to obtain a high enough signal to noise ratio to use this data in the de-ghosting process. In this paper, we study how the characteristics of transverse vibration noise are affected by the choice of the streamer mechanical platform. To compare the implications of design options we built different streamer sections with dense single sensor sampling, identical electronic backbones and MEMS sensors. We towed them together under different tensions in a field experiment and observed that, as expected, the transverse vibration noise was the dominant noise mode, with dispersion characteristics depending on the streamer bending stiffness. We also found that the noise amplitude and maximum frequency (under the same towing conditions) depends on the mechanical properties of the cable, and that they could be reduced by using a new type of gel optimized to dampen vibration. As a result of theoretical modelling and these field observations we propose a new approach to streamer noise attenuation which involves optimising the mechanical characteristics and using non-uniform single sensor sampling in the design of the cable. This avoids some of the compromises we incur using analog arrays and the high cost of single sensor, uniform Nyquist sampling.","PeriodicalId":8502,"journal":{"name":"ASEG Extended Abstracts","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASEG Extended Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/22020586.2019.12073228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary The towed streamer market is moving towards the widespread use of multicomponent streamers. This type of streamer contains hydrophones and particle motion sensors which are used to carry out receiver-side deghosting of the data. The main source of noise on the particle motion sensors is streamer transverse vibration, and it can be challenging to obtain a high enough signal to noise ratio to use this data in the de-ghosting process. In this paper, we study how the characteristics of transverse vibration noise are affected by the choice of the streamer mechanical platform. To compare the implications of design options we built different streamer sections with dense single sensor sampling, identical electronic backbones and MEMS sensors. We towed them together under different tensions in a field experiment and observed that, as expected, the transverse vibration noise was the dominant noise mode, with dispersion characteristics depending on the streamer bending stiffness. We also found that the noise amplitude and maximum frequency (under the same towing conditions) depends on the mechanical properties of the cable, and that they could be reduced by using a new type of gel optimized to dampen vibration. As a result of theoretical modelling and these field observations we propose a new approach to streamer noise attenuation which involves optimising the mechanical characteristics and using non-uniform single sensor sampling in the design of the cable. This avoids some of the compromises we incur using analog arrays and the high cost of single sensor, uniform Nyquist sampling.
当前和未来的多组件拖曳拖缆设计
拖曳式拖缆市场正朝着广泛使用多组件拖缆的方向发展。这种类型的拖缆包含水听器和粒子运动传感器,用于执行接收端数据的去鬼影。粒子运动传感器的主要噪声源是流光横向振动,在去重影过程中获得足够高的信噪比是一项挑战。本文研究了拖缆机械平台的选择对横向振动噪声特性的影响。为了比较设计方案的影响,我们使用密集的单传感器采样、相同的电子骨干和MEMS传感器构建了不同的拖缆部分。我们在不同张力下将它们拖在一起进行了现场实验,并观察到,正如预期的那样,横向振动噪声是主要的噪声模式,并具有色散特性,这取决于拖缆的弯曲刚度。我们还发现,噪音幅度和最大频率(在相同的牵引条件下)取决于电缆的机械性能,并且可以通过使用一种新型的凝胶来减少振动。作为理论建模和这些现场观察的结果,我们提出了一种新的拖缆噪声衰减方法,包括优化机械特性和在电缆设计中使用非均匀单传感器采样。这避免了我们使用模拟阵列和单个传感器的高成本所带来的一些妥协,均匀奈奎斯特采样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信