Chua’s oscillator: an introductory approach to chaos theory

Q4 Social Sciences
A. Sordi
{"title":"Chua’s oscillator: an introductory approach to chaos theory","authors":"A. Sordi","doi":"10.1590/1806-9126-rbef-2020-0437","DOIUrl":null,"url":null,"abstract":"The purpose of this article is to build an introductory approach to chaos theory from the Chua’ oscillator for students of mathematics, physics and engineering. The Chua’ circuit is one of the simplest dynamic systems that produce irregular behavior. Despite its simplicity, this oscillating circuit is a very useful device for studying basic principles of chaos theory. This study begins with the definition of equilibrium points, this is done in a graphic and analytical way. The analysis of the stationary solution of differential equations system allows to show the occurrence of pitchfork bifurcation. The eigenvalues are calculated and the trajectories of the Chua’ oscillator are analyzed, then the occurrence of Hopf bifurcation is demonstrated. Period-doubling cascade are observed using phase portrait and orbit diagram. Finally, sensitivity to initial conditions is studied by calculating Lyapunov exponents.","PeriodicalId":49620,"journal":{"name":"Revista Brasileira De Ensino De Fisica","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira De Ensino De Fisica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/1806-9126-rbef-2020-0437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

The purpose of this article is to build an introductory approach to chaos theory from the Chua’ oscillator for students of mathematics, physics and engineering. The Chua’ circuit is one of the simplest dynamic systems that produce irregular behavior. Despite its simplicity, this oscillating circuit is a very useful device for studying basic principles of chaos theory. This study begins with the definition of equilibrium points, this is done in a graphic and analytical way. The analysis of the stationary solution of differential equations system allows to show the occurrence of pitchfork bifurcation. The eigenvalues are calculated and the trajectories of the Chua’ oscillator are analyzed, then the occurrence of Hopf bifurcation is demonstrated. Period-doubling cascade are observed using phase portrait and orbit diagram. Finally, sensitivity to initial conditions is studied by calculating Lyapunov exponents.
蔡氏振荡器:混沌理论的入门方法
本文的目的是为数学、物理和工程专业的学生建立一个从蔡氏振子到混沌理论的入门方法。蔡氏电路是产生不规则行为的最简单的动态系统之一。尽管它很简单,但这种振荡电路是研究混沌理论基本原理的一个非常有用的装置。本研究从平衡点的定义开始,以图解和分析的方式完成。微分方程组的平稳解的分析可以显示干草叉分叉的发生。计算了特征值,分析了蔡子的运动轨迹,证明了Hopf分岔的存在。用相位图和轨道图观察倍周期级联。最后,通过计算李雅普诺夫指数研究了对初始条件的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
102
审稿时长
6-12 weeks
期刊介绍: The Revista Brasileira de Ensino de Física - RBEF - is an open-access journal of the Brazilian Physical Society (SBF) devoted to the improvement of Physics teaching at all academic levels. Through the publication of peer-reviewed, high-quality papers, we aim at promoting Physics and correlated sciences, thus contributing to the scientific education of society. The RBEF accepts papers on theoretical and experimental aspects of Physics, materials and methodology, history and philosophy of sciences, education policies and themes relevant to the physics-teaching and research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信