A. Chumaevsky, A. Panfilov, E. Knyazhev, A. Zykova, A. Gusarova, K. Kalashnikov, A. Vorontsov, N. Savchenko, S. Nikonov, A. Cheremnov, V. Е. Rubtsov, E. Kolubaev
{"title":"Production of gradient intermetallic layers based on aluminum alloy and copper by electron-beam additive technology","authors":"A. Chumaevsky, A. Panfilov, E. Knyazhev, A. Zykova, A. Gusarova, K. Kalashnikov, A. Vorontsov, N. Savchenko, S. Nikonov, A. Cheremnov, V. Е. Rubtsov, E. Kolubaev","doi":"10.17804/2410-9908.2021.6.019-031","DOIUrl":null,"url":null,"abstract":"This study presents the results of experimental work on the production and examination of samples of laminated polymetallic products made by wire-feed electron-beam additive technology using the technique of controlled filament feeding into the melt bath. The structure of the products based on M1 copper and AMg5 aluminum alloy combines metallic and intermetallic layers with the presence of a gradient transition between the phases. Inside the layers with a transition structure the distribution of intermetallic phases can be of different types. The microhardness values of the different structural constituents of the samples differ by more than a factor of 16. The mechanical properties of the material of the transition layers are characterized by low strength and low plasticity. In the structure of the intermetallic layers and at the boundary between them the formation of defects in the form of cracks and delaminations is observed.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics, Resource and Mechanics of materials and structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17804/2410-9908.2021.6.019-031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the results of experimental work on the production and examination of samples of laminated polymetallic products made by wire-feed electron-beam additive technology using the technique of controlled filament feeding into the melt bath. The structure of the products based on M1 copper and AMg5 aluminum alloy combines metallic and intermetallic layers with the presence of a gradient transition between the phases. Inside the layers with a transition structure the distribution of intermetallic phases can be of different types. The microhardness values of the different structural constituents of the samples differ by more than a factor of 16. The mechanical properties of the material of the transition layers are characterized by low strength and low plasticity. In the structure of the intermetallic layers and at the boundary between them the formation of defects in the form of cracks and delaminations is observed.