SVM with feature selection and smooth prediction in images: Application to CAD of prostate cancer

Emilie Niaf, Rémi Flamary, A. Rakotomamonjy, O. Rouvière, C. Lartizien
{"title":"SVM with feature selection and smooth prediction in images: Application to CAD of prostate cancer","authors":"Emilie Niaf, Rémi Flamary, A. Rakotomamonjy, O. Rouvière, C. Lartizien","doi":"10.1109/ICIP.2014.7025455","DOIUrl":null,"url":null,"abstract":"We propose a new computer-aided detection scheme for prostate cancer screening on multiparametric magnetic resonance (mp-MR) images. Based on an annotated training database of mp-MR images from thirty patients, we train a novel support vector machine (SVM)-inspired classifier which simultaneously learns an optimal linear discriminant and a subset of predictor variables (or features) that are most relevant to the classification task, while promoting spatial smoothness of the malignancy prediction maps. The approach uses a ℓ1-norm in the regularization term of the optimization problem that rewards sparsity. Spatial smoothness is promoted via an additional cost term that encodes the spatial neighborhood of the voxels, to avoid noisy prediction maps. Experimental comparisons of the proposed ℓ1-Smooth SVM scheme to the regular ℓ2-SVM scheme demonstrate a clear visual and numerical gain on our clinical dataset.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We propose a new computer-aided detection scheme for prostate cancer screening on multiparametric magnetic resonance (mp-MR) images. Based on an annotated training database of mp-MR images from thirty patients, we train a novel support vector machine (SVM)-inspired classifier which simultaneously learns an optimal linear discriminant and a subset of predictor variables (or features) that are most relevant to the classification task, while promoting spatial smoothness of the malignancy prediction maps. The approach uses a ℓ1-norm in the regularization term of the optimization problem that rewards sparsity. Spatial smoothness is promoted via an additional cost term that encodes the spatial neighborhood of the voxels, to avoid noisy prediction maps. Experimental comparisons of the proposed ℓ1-Smooth SVM scheme to the regular ℓ2-SVM scheme demonstrate a clear visual and numerical gain on our clinical dataset.
基于图像特征选择和平滑预测的SVM在前列腺癌CAD中的应用
我们提出了一种新的计算机辅助检测方案,用于多参数磁共振(mp-MR)图像的前列腺癌筛查。基于30例患者的mp-MR图像的注释训练数据库,我们训练了一种新的支持向量机(SVM)启发的分类器,该分类器同时学习最优线性判别器和与分类任务最相关的预测变量(或特征)子集,同时提高了恶性肿瘤预测图的空间平滑性。该方法在奖励稀疏性的优化问题的正则化项中使用1-范数。通过对体素的空间邻域进行编码的额外代价项来提高空间平滑度,以避免有噪声的预测图。将提出的1-光滑支持向量机方案与规则的2-支持向量机方案进行实验比较,在临床数据集上显示出清晰的视觉和数值增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信