Deformations of stable maps of curves

Catriona Maclean
{"title":"Deformations of stable maps of curves","authors":"Catriona Maclean","doi":"10.1016/S0764-4442(01)02167-X","DOIUrl":null,"url":null,"abstract":"<div><p>Given a smooth variety, <em>X</em> and a map <em>g</em>:<em>X</em>→<em>Δ</em> such that <em>g</em><sup>−1</sup>(0) is a normal crossing variety <em>X</em><sub>0</sub>=<em>X</em><sub>1</sub>∪<sub><em>Z</em></sub><em>X</em><sub>2</sub>, we consider stable maps <em>F</em><sub>0</sub>:<em>C</em><sub>0</sub>→<em>X</em><sub>0</sub> which appear as the central fibre of a family of maps <span><span><img></span></span> Splitting such a stable map up into <em>F</em><sub>1</sub>:<em>C</em><sub>1</sub>→<em>X</em><sub>1</sub> and <em>F</em><sub>2</sub>:<em>C</em><sub>2</sub>→<em>X</em><sub>2</sub>, we derive conditions on the 0-cycle <em>C</em><sub><em>i</em></sub>∩<em>Z</em><sub><em>i</em></sub> in the Chow group <em>A</em><sup>0</sup>(<em>F</em><sup>−1</sup><sub><em>i</em></sub>(<em>Z</em>)). These conditions provide an elementary geometric justification for the work of Li and Ruan in [4] and of Gathmann in [2].</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 11","pages":"Pages 985-990"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02167-X","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S076444420102167X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a smooth variety, X and a map g:XΔ such that g−1(0) is a normal crossing variety X0=X1ZX2, we consider stable maps F0:C0X0 which appear as the central fibre of a family of maps Splitting such a stable map up into F1:C1X1 and F2:C2X2, we derive conditions on the 0-cycle CiZi in the Chow group A0(F−1i(Z)). These conditions provide an elementary geometric justification for the work of Li and Ruan in [4] and of Gathmann in [2].

稳定曲线映射的变形
给定一个光滑的变量X和一个映射g:X→Δ,使得g−1(0)是一个正规的交叉变量X0=X1∪ZX2,我们考虑作为映射族中心纤维的稳定映射F0:C0→X0。将这样一个稳定映射分解为F1:C1→X1和F2:C2→X2,我们得到了Chow群A0(F−1i(Z))中0环Ci∩Zi的条件。这些条件为Li和阮在[4]和Gathmann在[2]中的工作提供了基本的几何证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信