Machine learning-based anomaly detection for post-silicon bug diagnosis

A. DeOrio, Qingkun Li, M. Burgess, V. Bertacco
{"title":"Machine learning-based anomaly detection for post-silicon bug diagnosis","authors":"A. DeOrio, Qingkun Li, M. Burgess, V. Bertacco","doi":"10.5555/2485288.2485411","DOIUrl":null,"url":null,"abstract":"The exponentially growing complexity of modern processors intensifies verification challenges. Traditional pre-silicon verification covers less and less of the design space, resulting in increasing post-silicon validation effort. A critical challenge is the manual debugging of intermittent failures on prototype chips, where multiple executions of a same test do not yield a consistent outcome. We leverage the power of machine learning to support automatic diagnosis of these difficult, inconsistent bugs. During post-silicon validation, lightweight hardware logs a compact measurement of observed signal activity over multiple executions of a same test: some may pass, somemay fail. Our novel algorithm applies anomaly detection techniques similar to those used to detect credit card fraud to identify the approximate cycle of a bug's occurrence and a set of candidate root-cause signals. Compared against other state-of-the-art solutions in this space, our new approach can locate the time of a bug's occurrence with nearly 4x better accuracy when applied to the complex OpenSPARC T2 design.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"3 1","pages":"491-496"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/2485288.2485411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

The exponentially growing complexity of modern processors intensifies verification challenges. Traditional pre-silicon verification covers less and less of the design space, resulting in increasing post-silicon validation effort. A critical challenge is the manual debugging of intermittent failures on prototype chips, where multiple executions of a same test do not yield a consistent outcome. We leverage the power of machine learning to support automatic diagnosis of these difficult, inconsistent bugs. During post-silicon validation, lightweight hardware logs a compact measurement of observed signal activity over multiple executions of a same test: some may pass, somemay fail. Our novel algorithm applies anomaly detection techniques similar to those used to detect credit card fraud to identify the approximate cycle of a bug's occurrence and a set of candidate root-cause signals. Compared against other state-of-the-art solutions in this space, our new approach can locate the time of a bug's occurrence with nearly 4x better accuracy when applied to the complex OpenSPARC T2 design.
基于机器学习的后硅bug诊断异常检测
现代处理器指数级增长的复杂性加剧了验证的挑战。传统的硅前验证覆盖的设计空间越来越少,导致硅后验证工作量增加。一个关键的挑战是手动调试原型芯片上的间歇性故障,其中多次执行相同的测试不会产生一致的结果。我们利用机器学习的力量来支持这些困难的、不一致的错误的自动诊断。在硅后验证期间,轻量级硬件记录了对同一测试多次执行所观察到的信号活动的紧凑测量:有些可能通过,有些可能失败。我们的新算法应用了类似于检测信用卡欺诈的异常检测技术,以识别漏洞发生的大致周期和一组候选根本原因信号。与该领域的其他最先进的解决方案相比,我们的新方法在应用于复杂的OpenSPARC T2设计时,可以以近4倍的精度定位错误发生的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信