Xin Wang, Xian-Zhe Hong, Yi-Wei Li, Ying Li, Jie Wang, Peng Chen, Bi-Feng Liu
{"title":"Microfluidics-based strategies for molecular diagnostics of infectious diseases.","authors":"Xin Wang, Xian-Zhe Hong, Yi-Wei Li, Ying Li, Jie Wang, Peng Chen, Bi-Feng Liu","doi":"10.1186/s40779-022-00374-3","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional diagnostic strategies for infectious disease detection require benchtop instruments that are inappropriate for point-of-care testing (POCT). Emerging microfluidics, a highly miniaturized, automatic, and integrated technology, are a potential substitute for traditional methods in performing rapid, low-cost, accurate, and on-site diagnoses. Molecular diagnostics are widely used in microfluidic devices as the most effective approaches for pathogen detection. This review summarizes the latest advances in microfluidics-based molecular diagnostics for infectious diseases from academic perspectives and industrial outlooks. First, we introduce the typical on-chip nucleic acid processes, including sample preprocessing, amplification, and signal read-out. Then, four categories of microfluidic platforms are compared with respect to features, merits, and demerits. We further discuss application of the digital assay in absolute nucleic acid quantification. Both the classic and recent microfluidics-based commercial molecular diagnostic devices are summarized as proof of the current market status. Finally, we propose future directions for microfluidics-based infectious disease diagnosis.</p>","PeriodicalId":7040,"journal":{"name":"Acta Endoscopica","volume":"24 1","pages":"11"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8930194/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Endoscopica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40779-022-00374-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional diagnostic strategies for infectious disease detection require benchtop instruments that are inappropriate for point-of-care testing (POCT). Emerging microfluidics, a highly miniaturized, automatic, and integrated technology, are a potential substitute for traditional methods in performing rapid, low-cost, accurate, and on-site diagnoses. Molecular diagnostics are widely used in microfluidic devices as the most effective approaches for pathogen detection. This review summarizes the latest advances in microfluidics-based molecular diagnostics for infectious diseases from academic perspectives and industrial outlooks. First, we introduce the typical on-chip nucleic acid processes, including sample preprocessing, amplification, and signal read-out. Then, four categories of microfluidic platforms are compared with respect to features, merits, and demerits. We further discuss application of the digital assay in absolute nucleic acid quantification. Both the classic and recent microfluidics-based commercial molecular diagnostic devices are summarized as proof of the current market status. Finally, we propose future directions for microfluidics-based infectious disease diagnosis.
期刊介绍:
Revue officielle de la Société française endoscopie digestive (SFED), Acta Endoscopica publie des articles de formation continue regroupés le plus souvent dans un dossier thématique. Endoscopie tant sur le plan diagnostique que thérapeutique est étudiée à travers des articles originaux et des cas cliniques. Ses applications médicales et chirurgicales sont largement exposées. Une place est faite aux études expérimentales sur de nouveaux matériels endoscopiques.