Optimum location for operation of small size distributed generators

N. Ghanbari, H. Golzari, H. Mokhtari, M. Poshtan
{"title":"Optimum location for operation of small size distributed generators","authors":"N. Ghanbari, H. Golzari, H. Mokhtari, M. Poshtan","doi":"10.1109/ICRERA.2017.8191283","DOIUrl":null,"url":null,"abstract":"Optimizing the size and finding the best location of required number of micro gas turbine running Distributed Generators (DG) to minimize the active power losses is the focus of this paper. Since the excitation field of the synchronous machines discussed in this paper is produced by permanent magnets, the reactive power is not controlled. To minimize the active power losses and satisfy the demand load, a two-stage approach has been proposed for the allocation and sizing of DGs in a distribution system with time-varying loads. The strategic placement of DGs can help to reduce energy losses and maintain the voltage within an acceptable boundary. The proposed method has been tested on a 9-bus test system.","PeriodicalId":6535,"journal":{"name":"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)","volume":"5 1","pages":"300-303"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRERA.2017.8191283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Optimizing the size and finding the best location of required number of micro gas turbine running Distributed Generators (DG) to minimize the active power losses is the focus of this paper. Since the excitation field of the synchronous machines discussed in this paper is produced by permanent magnets, the reactive power is not controlled. To minimize the active power losses and satisfy the demand load, a two-stage approach has been proposed for the allocation and sizing of DGs in a distribution system with time-varying loads. The strategic placement of DGs can help to reduce energy losses and maintain the voltage within an acceptable boundary. The proposed method has been tested on a 9-bus test system.
小型分布式发电机的最佳运行位置
优化运行分布式发电机的微型燃气轮机的尺寸和最佳位置,使有功损耗最小化是本文研究的重点。由于本文所讨论的同步电机的励磁场是由永磁体产生的,所以无功功率不受控制。为使有功功率损耗最小并满足需求负荷,提出了一种时变负荷配电系统中分布式配电系统的两阶段分配和规模确定方法。dg的战略布局可以帮助减少能量损失并将电压保持在可接受的范围内。该方法已在一个9总线测试系统上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信