{"title":"Modified projected Newton scheme for non-convex function with simple constraints","authors":"Suvra Chakraborty Kanti, G. Panda","doi":"10.2298/YJOR200515002C","DOIUrl":null,"url":null,"abstract":"In this paper, a descent line search scheme is proposed to find a local minimum point of a non-convex optimization problem with simple constraints. The idea ensures that the scheme escapes the saddle points and finally settles for a local minimum point of the non-convex optimization problem. A positive definite scaling matrix for the proposed scheme is formed through symmetric indefinite matrix factorization of the Hessian matrix of the objective function at each iteration. A numerical illustration is provided, and the global convergence of the scheme is also justified.","PeriodicalId":52438,"journal":{"name":"Yugoslav Journal of Operations Research","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yugoslav Journal of Operations Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/YJOR200515002C","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a descent line search scheme is proposed to find a local minimum point of a non-convex optimization problem with simple constraints. The idea ensures that the scheme escapes the saddle points and finally settles for a local minimum point of the non-convex optimization problem. A positive definite scaling matrix for the proposed scheme is formed through symmetric indefinite matrix factorization of the Hessian matrix of the objective function at each iteration. A numerical illustration is provided, and the global convergence of the scheme is also justified.