Automatic Estimation of Human Weight From Body Silhouette Using Multiple Linear Regression

Hurriyatul Fitriyah, Gembong Edhi Setyawan
{"title":"Automatic Estimation of Human Weight From Body Silhouette Using Multiple Linear Regression","authors":"Hurriyatul Fitriyah, Gembong Edhi Setyawan","doi":"10.1109/EECSI.2018.8752763","DOIUrl":null,"url":null,"abstract":"Estimating weight based on 2D image is advantageous especially for contactless and rapid measurement. Several researches used additional thermal camera or Kinect camera, required subjects to do front and side pose and manually extract body measures. This research propose an algorithm to estimate body weight automatically using 2D visual image where subject only do front pose. This research studied 4 features of body measures which are: (F1) height, and width of (F2) shoulder, (F3) abdomen/waist plus arm, (F4) feet. Each feature was simply subtracted based on body proportion where normal body has 8 equal segments. Shoulder is in 2nd segment, abdomen/waist is in 4th segment and feet is in the last segment. Multiple Linear Regression is used to determine weight estimation formula of all combination of 4 features, 15 in total. The highest significance R2 (0.80) and RMSE 2.68 Kg is given when using all 4 features in the estimation formula.","PeriodicalId":6543,"journal":{"name":"2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI)","volume":"53 1","pages":"749-752"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EECSI.2018.8752763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Estimating weight based on 2D image is advantageous especially for contactless and rapid measurement. Several researches used additional thermal camera or Kinect camera, required subjects to do front and side pose and manually extract body measures. This research propose an algorithm to estimate body weight automatically using 2D visual image where subject only do front pose. This research studied 4 features of body measures which are: (F1) height, and width of (F2) shoulder, (F3) abdomen/waist plus arm, (F4) feet. Each feature was simply subtracted based on body proportion where normal body has 8 equal segments. Shoulder is in 2nd segment, abdomen/waist is in 4th segment and feet is in the last segment. Multiple Linear Regression is used to determine weight estimation formula of all combination of 4 features, 15 in total. The highest significance R2 (0.80) and RMSE 2.68 Kg is given when using all 4 features in the estimation formula.
基于多重线性回归的人体轮廓体重自动估计
基于二维图像的重量估计尤其有利于非接触和快速测量。一些研究使用额外的热像仪或Kinect摄像头,要求受试者做正面和侧面姿势,并手动提取身体测量。本研究提出了一种利用被试只做正面姿势的二维视觉图像自动估计体重的算法。本研究研究了身体测量的4个特征,分别是:(F1)身高,(F2)肩宽,(F3)腹/腰加臂宽,(F4)脚宽。每个特征简单地根据身体比例减去,正常身体有8个相等的部分。肩膀在第二节,腹部/腰部在第四节,脚在最后一节。采用多元线性回归确定4个特征全部组合的权重估计公式,共15个特征。当在估计公式中使用所有4个特征时,给出最高显著性R2(0.80)和RMSE 2.68 Kg。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信