Micah Bibb, Margaret Nowicki, Kenneth J. McDonald, N. Zander
{"title":"Strength and Quality of Recycled Acrylonitrile Butadiene Styrene (ABS)","authors":"Micah Bibb, Margaret Nowicki, Kenneth J. McDonald, N. Zander","doi":"10.1115/imece2021-70583","DOIUrl":null,"url":null,"abstract":"\n Many times, when 3D printed parts exceed their useful life or when there is a mistake in the manufacturing process, that 3D printed material is thrown away. To avoid such waste, that material can be shredded up and re-extruded into useable filament. There are some concerns over the degradation of the material as it is recycled and reprinted. In this study, the strength and quality of ABS plastic as it is recycled and reprinted has been investigated. The ABS at each stage of recycling was printed into “dog bone” test samples for mechanical testing. The tensile strength was measured using an MTS Universal Testing Machine. Following the completion of these tests, the chemical properties of the samples were tested using thermogravimetric analysis and differential scanning calorimetry. With each recycle, the tensile load capabilities of the ABS dropped by an average of 5.93%; however, chemical tests showed no significant degradation in thermal strength.","PeriodicalId":23837,"journal":{"name":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-70583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Many times, when 3D printed parts exceed their useful life or when there is a mistake in the manufacturing process, that 3D printed material is thrown away. To avoid such waste, that material can be shredded up and re-extruded into useable filament. There are some concerns over the degradation of the material as it is recycled and reprinted. In this study, the strength and quality of ABS plastic as it is recycled and reprinted has been investigated. The ABS at each stage of recycling was printed into “dog bone” test samples for mechanical testing. The tensile strength was measured using an MTS Universal Testing Machine. Following the completion of these tests, the chemical properties of the samples were tested using thermogravimetric analysis and differential scanning calorimetry. With each recycle, the tensile load capabilities of the ABS dropped by an average of 5.93%; however, chemical tests showed no significant degradation in thermal strength.