Time Reversal Based Robust Gesture Recognition Using Wifi

Sai Deepika Regani, Beibei Wang, Min Wu, K. Liu
{"title":"Time Reversal Based Robust Gesture Recognition Using Wifi","authors":"Sai Deepika Regani, Beibei Wang, Min Wu, K. Liu","doi":"10.1109/ICASSP40776.2020.9053420","DOIUrl":null,"url":null,"abstract":"Gesture recognition using wireless sensing opened a plethora of applications in the field of human-computer interaction. However, most existing works are not robust without requiring wearables or tedious training/calibration. In this work, we propose WiGRep, a time reversal based gesture recognition approach using Wi-Fi, which can recognize different gestures by counting the number of repeating gesture segments. Built upon the time reversal phenomenon in RF transmission, the Time Reversal Resonating Strength (TRRS) is used to detect repeating patterns in a gesture. A robust low-complexity algorithm is proposed to accommodate possible variations of gestures and indoor environments. The main advantages of WiGRep are that it is calibration-free and location and environment independent. Experiments performed in both line of sight and non-line-of-sight scenarios demonstrate a detection rate of 99.6% and 99.4%, respectively, for a fixed false alarm rate of 5%.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"17 1","pages":"8309-8313"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9053420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Gesture recognition using wireless sensing opened a plethora of applications in the field of human-computer interaction. However, most existing works are not robust without requiring wearables or tedious training/calibration. In this work, we propose WiGRep, a time reversal based gesture recognition approach using Wi-Fi, which can recognize different gestures by counting the number of repeating gesture segments. Built upon the time reversal phenomenon in RF transmission, the Time Reversal Resonating Strength (TRRS) is used to detect repeating patterns in a gesture. A robust low-complexity algorithm is proposed to accommodate possible variations of gestures and indoor environments. The main advantages of WiGRep are that it is calibration-free and location and environment independent. Experiments performed in both line of sight and non-line-of-sight scenarios demonstrate a detection rate of 99.6% and 99.4%, respectively, for a fixed false alarm rate of 5%.
基于时间反转的鲁棒手势识别使用Wifi
基于无线传感的手势识别在人机交互领域开辟了大量的应用领域。然而,如果不需要可穿戴设备或繁琐的培训/校准,大多数现有的工作都不是健壮的。在这项工作中,我们提出了WiGRep,一种使用Wi-Fi的基于时间反转的手势识别方法,它可以通过计算重复手势片段的数量来识别不同的手势。基于射频传输中的时间反转现象,时间反转共振强度(TRRS)用于检测手势中的重复模式。提出了一种鲁棒的低复杂度算法,以适应手势和室内环境的可能变化。WiGRep的主要优点是无需校准,与位置和环境无关。在视线和非视线场景下进行的实验表明,在固定的虚警率为5%的情况下,检测率分别为99.6%和99.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信