Erwan Schild, Gautier Durantin, Jean-Charles Lamirel, F. Miconi
{"title":"Iterative and Semi-Supervised Design of Chatbots Using Interactive Clustering","authors":"Erwan Schild, Gautier Durantin, Jean-Charles Lamirel, F. Miconi","doi":"10.4018/ijdwm.298007","DOIUrl":null,"url":null,"abstract":"Chatbots represent a promising tool to automate the processing of requests in a business context. However, despite major progress in natural language processing technologies, constructing a dataset deemed relevant by business experts is a manual, iterative and error-prone process. To assist these experts during modelling and labelling, the authors propose an active learning methodology coined Interactive Clustering. It relies on interactions between computer-guided segmentation of data in intents, and response-driven human annotations imposing constraints on clusters to improve relevance.This article applies Interactive Clustering on a realistic dataset, and measures the optimal settings required for relevant segmentation in a minimal number of annotations. The usability of the method is discussed in terms of computation time, and the achieved compromise between business relevance and classification performance during training.In this context, Interactive Clustering appears as a suitable methodology combining human and computer initiatives to efficiently develop a useable chatbot.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.298007","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
Chatbots represent a promising tool to automate the processing of requests in a business context. However, despite major progress in natural language processing technologies, constructing a dataset deemed relevant by business experts is a manual, iterative and error-prone process. To assist these experts during modelling and labelling, the authors propose an active learning methodology coined Interactive Clustering. It relies on interactions between computer-guided segmentation of data in intents, and response-driven human annotations imposing constraints on clusters to improve relevance.This article applies Interactive Clustering on a realistic dataset, and measures the optimal settings required for relevant segmentation in a minimal number of annotations. The usability of the method is discussed in terms of computation time, and the achieved compromise between business relevance and classification performance during training.In this context, Interactive Clustering appears as a suitable methodology combining human and computer initiatives to efficiently develop a useable chatbot.
期刊介绍:
The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving