Iterative and Semi-Supervised Design of Chatbots Using Interactive Clustering

IF 0.5 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Erwan Schild, Gautier Durantin, Jean-Charles Lamirel, F. Miconi
{"title":"Iterative and Semi-Supervised Design of Chatbots Using Interactive Clustering","authors":"Erwan Schild, Gautier Durantin, Jean-Charles Lamirel, F. Miconi","doi":"10.4018/ijdwm.298007","DOIUrl":null,"url":null,"abstract":"Chatbots represent a promising tool to automate the processing of requests in a business context. However, despite major progress in natural language processing technologies, constructing a dataset deemed relevant by business experts is a manual, iterative and error-prone process. To assist these experts during modelling and labelling, the authors propose an active learning methodology coined Interactive Clustering. It relies on interactions between computer-guided segmentation of data in intents, and response-driven human annotations imposing constraints on clusters to improve relevance.This article applies Interactive Clustering on a realistic dataset, and measures the optimal settings required for relevant segmentation in a minimal number of annotations. The usability of the method is discussed in terms of computation time, and the achieved compromise between business relevance and classification performance during training.In this context, Interactive Clustering appears as a suitable methodology combining human and computer initiatives to efficiently develop a useable chatbot.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.298007","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 1

Abstract

Chatbots represent a promising tool to automate the processing of requests in a business context. However, despite major progress in natural language processing technologies, constructing a dataset deemed relevant by business experts is a manual, iterative and error-prone process. To assist these experts during modelling and labelling, the authors propose an active learning methodology coined Interactive Clustering. It relies on interactions between computer-guided segmentation of data in intents, and response-driven human annotations imposing constraints on clusters to improve relevance.This article applies Interactive Clustering on a realistic dataset, and measures the optimal settings required for relevant segmentation in a minimal number of annotations. The usability of the method is discussed in terms of computation time, and the achieved compromise between business relevance and classification performance during training.In this context, Interactive Clustering appears as a suitable methodology combining human and computer initiatives to efficiently develop a useable chatbot.
基于交互聚类的聊天机器人迭代半监督设计
聊天机器人代表了一种很有前途的工具,可以在业务上下文中自动处理请求。然而,尽管自然语言处理技术取得了重大进展,但构建业务专家认为相关的数据集是一个手动的、迭代的、容易出错的过程。为了在建模和标记过程中帮助这些专家,作者提出了一种主动学习方法,称为交互式聚类。它依赖于意图中计算机引导的数据分割和响应驱动的人为注释之间的交互,这些注释在集群上施加约束以提高相关性。本文在实际数据集上应用交互式聚类,并测量在最少数量的注释中进行相关分割所需的最佳设置。从计算时间的角度讨论了该方法的可用性,并在训练过程中实现了业务相关性和分类性能之间的折衷。在这种情况下,交互式聚类似乎是一种合适的方法,结合了人类和计算机的主动性,以有效地开发可用的聊天机器人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Data Warehousing and Mining
International Journal of Data Warehousing and Mining COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信