Explicit and implicit difference formulas of higher order accuracy for one-dimensional heat equation

Hisayoshi Shintani
{"title":"Explicit and implicit difference formulas of higher order accuracy for one-dimensional heat equation","authors":"Hisayoshi Shintani","doi":"10.32917/HMJ/1206138224","DOIUrl":null,"url":null,"abstract":"For the numerical solution of this problem by the finite-difference methods, there are known the two-level explicit formula with the truncation error of order h, Crank-Nicolson's method GlβH? Douglas' high order correct method Q4Γ), three-level difference formulas [J3H, and so on. The object of this paper is to construct two-level explicit formulas with truncation errors of orders h and h, to determine their ranges of stability, and to derive the unconditionally stable two-level implicit formulas of higher order accuracy. Although the formulas obtained here are not all new, the stability conditions are considered in a somewhat unified form. These formulas will be useful not only for the direct use but also for the approximation of the truncation errors of the formulas of the lower order accuracy.","PeriodicalId":17080,"journal":{"name":"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry","volume":"14 1","pages":"259-270"},"PeriodicalIF":0.0000,"publicationDate":"1970-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32917/HMJ/1206138224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For the numerical solution of this problem by the finite-difference methods, there are known the two-level explicit formula with the truncation error of order h, Crank-Nicolson's method GlβH? Douglas' high order correct method Q4Γ), three-level difference formulas [J3H, and so on. The object of this paper is to construct two-level explicit formulas with truncation errors of orders h and h, to determine their ranges of stability, and to derive the unconditionally stable two-level implicit formulas of higher order accuracy. Although the formulas obtained here are not all new, the stability conditions are considered in a somewhat unified form. These formulas will be useful not only for the direct use but also for the approximation of the truncation errors of the formulas of the lower order accuracy.
一维热方程的高阶精度显式和隐式差分公式
对于该问题的有限差分数值解,已知截断误差为h阶的两级显式公式,Crank-Nicolson方法GlβH?道格拉斯的高阶正确法Q4Γ)、三阶差分公式[J3H]等。本文的目的是构造截断误差为h阶和h阶的两层显式公式,确定它们的稳定范围,并推导出具有高阶精度的无条件稳定的两层隐式公式。虽然这里得到的公式并不都是新的,但稳定性条件在某种程度上是统一的。这些公式不仅可用于直接使用,而且可用于近似低阶精度公式的截断误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信