ON PALETTE INDEX OF UNICYCLE AND BICYCLE GRAPHS

A. Ghazaryan
{"title":"ON PALETTE INDEX OF UNICYCLE AND BICYCLE GRAPHS","authors":"A. Ghazaryan","doi":"10.46991/pysu:a/2019.53.1.003","DOIUrl":null,"url":null,"abstract":"Given a proper edge coloring $ \\phi $ of a graph $ G $, we define the palette $ S_G (\\nu, \\phi) $ of a vertex $ \\nu \\mathclose{\\in} V(G) $ as the set of all colors appearing on edges incident with $ \\nu $. The palette index $ \\check{s} (G) $ of $ G $ is the minimum number of distinct palettes occurring in a proper edge coloring of $ G $. In this paper we give an upper bound on the palette index of a graph G in terms of cyclomatic number $ cyc(G) $ of $ G $ and maximum degree $ \\Delta (G) $ of $ G $. We also give a sharp upper bound for the palette index of unicycle and bicycle graphs.","PeriodicalId":21146,"journal":{"name":"Proceedings of the YSU A: Physical and Mathematical Sciences","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the YSU A: Physical and Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46991/pysu:a/2019.53.1.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Given a proper edge coloring $ \phi $ of a graph $ G $, we define the palette $ S_G (\nu, \phi) $ of a vertex $ \nu \mathclose{\in} V(G) $ as the set of all colors appearing on edges incident with $ \nu $. The palette index $ \check{s} (G) $ of $ G $ is the minimum number of distinct palettes occurring in a proper edge coloring of $ G $. In this paper we give an upper bound on the palette index of a graph G in terms of cyclomatic number $ cyc(G) $ of $ G $ and maximum degree $ \Delta (G) $ of $ G $. We also give a sharp upper bound for the palette index of unicycle and bicycle graphs.
关于独轮车图和自行车图的调色板指数
给定图形$ G $的适当边着色$ \phi $,我们将顶点$ \nu \mathclose{\in} V(G) $的调色板$ S_G (\nu, \phi) $定义为与$ \nu $相关的边上出现的所有颜色的集合。$ G $的调色板指数$ \check{s} (G) $是在$ G $的适当边缘着色中出现的不同调色板的最小数量。本文用$ G $的圈数$ cyc(G) $和$ G $的最大次$ \Delta (G) $给出了图G的调色指数的上界。我们还给出了单轮图和自行车图的调色板指数的一个明显的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信