Fault Tolerant Coloring of the Asynchronous Cycle

P. Fraigniaud, Patrick Lambein-Monette, M. Rabie
{"title":"Fault Tolerant Coloring of the Asynchronous Cycle","authors":"P. Fraigniaud, Patrick Lambein-Monette, M. Rabie","doi":"10.48550/arXiv.2207.11198","DOIUrl":null,"url":null,"abstract":"We present a wait-free algorithm for proper coloring the n nodes of the asynchronous cycle $C_n$, where each crash-prone node starts with its (unique) identifier as input. The algorithm is independent of $n \\geq 3$, and runs in $\\mathrm{O}(\\log^* n)$ rounds in $C_n$. This round-complexity is optimal thanks to a known matching lower bound, which applies even to synchronous (failure-free) executions. The range of colors used by our algorithm, namely $\\{0, ..., 4\\}$, is optimal too, thanks to a known lower bound on the minimum number of names for which renaming is solvable wait-free in shared-memory systems, whenever $n$ is a power of a prime. Indeed, our model coincides with the shared-memory model whenever $n = 3$, and the minimum number of names for which renaming is possible in 3-process shared-memory systems is 5.","PeriodicalId":89463,"journal":{"name":"Proceedings of the ... International Symposium on High Performance Distributed Computing","volume":"6 1","pages":"23:1-23:22"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Symposium on High Performance Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.11198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a wait-free algorithm for proper coloring the n nodes of the asynchronous cycle $C_n$, where each crash-prone node starts with its (unique) identifier as input. The algorithm is independent of $n \geq 3$, and runs in $\mathrm{O}(\log^* n)$ rounds in $C_n$. This round-complexity is optimal thanks to a known matching lower bound, which applies even to synchronous (failure-free) executions. The range of colors used by our algorithm, namely $\{0, ..., 4\}$, is optimal too, thanks to a known lower bound on the minimum number of names for which renaming is solvable wait-free in shared-memory systems, whenever $n$ is a power of a prime. Indeed, our model coincides with the shared-memory model whenever $n = 3$, and the minimum number of names for which renaming is possible in 3-process shared-memory systems is 5.
异步循环的容错着色
我们提出了一种无等待算法,用于对异步循环$C_n$的n个节点进行适当着色,其中每个容易崩溃的节点都以其(唯一)标识符作为输入。该算法独立于$n \geq 3$,并在$C_n$中运行$\mathrm{O}(\log^* n)$轮。由于有一个已知的匹配下界,这种循环复杂度是最优的,它甚至适用于同步(无故障)执行。我们的算法所使用的颜色范围,即$\{0, ..., 4\}$,也是最优的,这要感谢在共享内存系统中,当$n$是一个素数的幂时,可重命名的最小名称数量的已知下界。实际上,无论何时$n = 3$,我们的模型都与共享内存模型一致,并且在3进程共享内存系统中可以重命名的最小名称数是5。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信