A generalization of the linear complementarity problem

Richard W. Cottle , George B. Dantzig
{"title":"A generalization of the linear complementarity problem","authors":"Richard W. Cottle ,&nbsp;George B. Dantzig","doi":"10.1016/S0021-9800(70)80010-2","DOIUrl":null,"url":null,"abstract":"<div><p>The linear complementarity problem: find <em>z</em>∈<em>R<sup>p</sup></em> satisfying <span><math><mtable><mtr><mtd><mi>w</mi><mo>=</mo><mi>q</mi><mo>+</mo><mi>M</mi><mi>z</mi></mtd></mtr><mtr><mtd><mi>w</mi><mo>⩾</mo><mn>0</mn><mo>,</mo><mi>z</mi><mo>⩾</mo><mn>0</mn><mo>(</mo><mo>LCP</mo><mo>)</mo></mtd></mtr><mtr><mtd><msup><mo>z</mo><mi>T</mi></msup><mi>w</mi><mo>=</mo><mn>0</mn></mtd></mtr></mtable></math></span> is generalized to a problem in which the matrix <em>M</em> is not square. A solution technique similar to <span>C. E. Lemke's (1965)</span> method for solving (LCP) is given. The method is discussed from a graph-theoretic viewpoint and closely parallels a proof of Sperner's lemma by <span>D. I. A. Cohen (1967)</span> and some work of <span>H. Scarf (1967)</span> on approximating fixed points of a continuous mapping of a simplex into itself.</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"8 1","pages":"Pages 79-90"},"PeriodicalIF":0.0000,"publicationDate":"1970-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80010-2","citationCount":"171","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021980070800102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 171

Abstract

The linear complementarity problem: find zRp satisfying w=q+Mzw0,z0(LCP)zTw=0 is generalized to a problem in which the matrix M is not square. A solution technique similar to C. E. Lemke's (1965) method for solving (LCP) is given. The method is discussed from a graph-theoretic viewpoint and closely parallels a proof of Sperner's lemma by D. I. A. Cohen (1967) and some work of H. Scarf (1967) on approximating fixed points of a continuous mapping of a simplex into itself.

线性互补问题的一个推广
线性互补问题:发现z∈Rp满足w=q+Mzw大于或等于0,z大于或等于0(LCP)zTw=0被推广到矩阵M不是平方的问题。给出了一种类似于c.e. Lemke(1965)的求解方法(LCP)的解法。本文从图论的观点讨论了该方法,并与d.i.a. Cohen(1967)对Sperner引理的证明和H. Scarf(1967)关于逼近单纯形到自身的连续映射的不动点的一些工作密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信