Comparison between three integral formulations for the 2D-TE scattering problem

N. Joachimowicz, C. Pichot
{"title":"Comparison between three integral formulations for the 2D-TE scattering problem","authors":"N. Joachimowicz, C. Pichot","doi":"10.1109/APS.1989.134799","DOIUrl":null,"url":null,"abstract":"The fast Fourier transform conjugate gradient method solves numerically the electric field integral equation, using the method of moments with pulse basis function and point matching, but substantial errors are found in this method for the 2-D TE case. In the present work, the authors analyze the source of errors in these approximations and show that the modified method empirically proposed by D.T. Borup, D.M. Sullivan, and O.P. Ghandi (IEEE Trans. Microwave Theory Tech., vol.MTT-35, p.383-95, Apr.1987) would not have been necessary if correct terms in the integral equation were used. With this aim, the authors propose a new integral formulation using generalized functions and compare it with two previous formulations, that of S.C. Hill, C.H. DAmey, and D.A. Christensen Radio Sci., vol.18, p.328-36, May-June 1983 and D.E. Livesay and K.M. Chen (IEEE Trans. Microwave Theory Tech., vol.MMT-22, p.1273-80, 1974). For all the numerical methods discussed, the conjugate gradient technique is used to solve the linear system, and the convolution products are computed by means of a Fourier transform. The results are of interest in connection with refining numerical methods to support biomedical applications (e.g. microwave imaging and hypothermia treatment).<<ETX>>","PeriodicalId":11330,"journal":{"name":"Digest on Antennas and Propagation Society International Symposium","volume":"7 1","pages":"754-757 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1989-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest on Antennas and Propagation Society International Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.1989.134799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The fast Fourier transform conjugate gradient method solves numerically the electric field integral equation, using the method of moments with pulse basis function and point matching, but substantial errors are found in this method for the 2-D TE case. In the present work, the authors analyze the source of errors in these approximations and show that the modified method empirically proposed by D.T. Borup, D.M. Sullivan, and O.P. Ghandi (IEEE Trans. Microwave Theory Tech., vol.MTT-35, p.383-95, Apr.1987) would not have been necessary if correct terms in the integral equation were used. With this aim, the authors propose a new integral formulation using generalized functions and compare it with two previous formulations, that of S.C. Hill, C.H. DAmey, and D.A. Christensen Radio Sci., vol.18, p.328-36, May-June 1983 and D.E. Livesay and K.M. Chen (IEEE Trans. Microwave Theory Tech., vol.MMT-22, p.1273-80, 1974). For all the numerical methods discussed, the conjugate gradient technique is used to solve the linear system, and the convolution products are computed by means of a Fourier transform. The results are of interest in connection with refining numerical methods to support biomedical applications (e.g. microwave imaging and hypothermia treatment).<>
二维te散射问题三种积分公式的比较
快速傅里叶变换共轭梯度法采用带脉冲基函数的矩量法和点匹配法对电场积分方程进行数值求解,但该方法在二维TE情况下存在较大误差。在目前的工作中,作者分析了这些近似中的误差来源,并表明由D.T. Borup, D.M. Sullivan和O.P. Ghandi (IEEE Trans.)经验提出的改进方法。微波理论技术,vol.MTT-35, p.383-95, Apr.1987)如果在积分方程中使用正确的项就没有必要了。为此,作者提出了一种新的利用广义函数的积分公式,并将其与S.C. Hill、C.H. DAmey和D.A. Christensen的两种公式进行了比较。李德安、陈坤明(IEEE译),1983年5月- 6月微波理论技术,vol. 22, p.1273- 80,1974)。对于所讨论的所有数值方法,都使用共轭梯度技术来求解线性系统,并通过傅里叶变换计算卷积积。这些结果与改进数值方法以支持生物医学应用(例如微波成像和低温治疗)有关
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信