{"title":"Issues of WWW-based data visualization in the Earth System Science classroom","authors":"F. Mahootian","doi":"10.1109/IGARSS.1997.615278","DOIUrl":null,"url":null,"abstract":"Earth system science (ESS) is a holistic study of the Earth. ESS marshals the resources a variety of scientific and technical fields to explore interactions among the Earth's component subsystems in order to understand the Earth as a system, to explain Earth dynamics and Earth evolution, and to address the problem of the affects of human actions on global change. In order to investigate the Earth system, teachers and students need access to expertise in a broad variety of disciplines: chemistry, physics, computer science, biology, mathematics, statistics, and political science. A variety of relatively new skills are also required: networked computing, tools and techniques for retrieving, visualizing, and analyzing remote sensing data, and building dynamic systems models. The question of visualization of remote sensing data became a central issue in curriculum development efforts of the Earth System Science Community (ESSC), a three-year project supported by NASA's Information Infrastructure Technology and Applications and High Performance Computing and Communication programs. The thrust of the curriculum development effort was to enable students and teachers to conduct investigations in global change topics using remote sensing data gathered by NASA and other science agencies. The curriculum was project-based, with the intention of producing an authentic and living sense of understanding and participation in science research. Students and teachers were to collaborate online with their peers in other schools, and with scientists/mentors in universities and government science agencies. In this effort students and teachers become researchers and learn to design and carry out a research strategy, involving the proposal and articulation of a hypothesis, the building of a system model, and the search, retrieval, manipulation, visualization and analysis of appropriate data. Students conclude their research by testing their hypothesis with available data, using visualization software, and information available in print and on-line. Finally, students communicate the results of their research by publishing their reports, data, data products, and systems models.","PeriodicalId":64877,"journal":{"name":"遥感信息","volume":"27 1","pages":"854-856 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"遥感信息","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/IGARSS.1997.615278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Earth system science (ESS) is a holistic study of the Earth. ESS marshals the resources a variety of scientific and technical fields to explore interactions among the Earth's component subsystems in order to understand the Earth as a system, to explain Earth dynamics and Earth evolution, and to address the problem of the affects of human actions on global change. In order to investigate the Earth system, teachers and students need access to expertise in a broad variety of disciplines: chemistry, physics, computer science, biology, mathematics, statistics, and political science. A variety of relatively new skills are also required: networked computing, tools and techniques for retrieving, visualizing, and analyzing remote sensing data, and building dynamic systems models. The question of visualization of remote sensing data became a central issue in curriculum development efforts of the Earth System Science Community (ESSC), a three-year project supported by NASA's Information Infrastructure Technology and Applications and High Performance Computing and Communication programs. The thrust of the curriculum development effort was to enable students and teachers to conduct investigations in global change topics using remote sensing data gathered by NASA and other science agencies. The curriculum was project-based, with the intention of producing an authentic and living sense of understanding and participation in science research. Students and teachers were to collaborate online with their peers in other schools, and with scientists/mentors in universities and government science agencies. In this effort students and teachers become researchers and learn to design and carry out a research strategy, involving the proposal and articulation of a hypothesis, the building of a system model, and the search, retrieval, manipulation, visualization and analysis of appropriate data. Students conclude their research by testing their hypothesis with available data, using visualization software, and information available in print and on-line. Finally, students communicate the results of their research by publishing their reports, data, data products, and systems models.
期刊介绍:
Remote Sensing Information is a bimonthly academic journal supervised by the Ministry of Natural Resources of the People's Republic of China and sponsored by China Academy of Surveying and Mapping Science. Since its inception in 1986, it has been one of the authoritative journals in the field of remote sensing in China.In 2014, it was recognised as one of the first batch of national academic journals, and was awarded the honours of Core Journals of China Science Citation Database, Chinese Core Journals, and Core Journals of Science and Technology of China. The journal won the Excellence Award (First Prize) of the National Excellent Surveying, Mapping and Geographic Information Journal Award in 2011 and 2017 respectively.
Remote Sensing Information is dedicated to reporting the cutting-edge theoretical and applied results of remote sensing science and technology, promoting academic exchanges at home and abroad, and promoting the application of remote sensing science and technology and industrial development. The journal adheres to the principles of openness, fairness and professionalism, abides by the anonymous review system of peer experts, and has good social credibility. The main columns include Review, Theoretical Research, Innovative Applications, Special Reports, International News, Famous Experts' Forum, Geographic National Condition Monitoring, etc., covering various fields such as surveying and mapping, forestry, agriculture, geology, meteorology, ocean, environment, national defence and so on.
Remote Sensing Information aims to provide a high-level academic exchange platform for experts and scholars in the field of remote sensing at home and abroad, to enhance academic influence, and to play a role in promoting and supporting the protection of natural resources, green technology innovation, and the construction of ecological civilisation.