{"title":"Efficient Algorithms for Basket Default Swap Pricing with Multivariate Archimedean Copulas","authors":"G. Choe, Hyun Jin Jang","doi":"10.2139/ssrn.1414111","DOIUrl":null,"url":null,"abstract":"We introduce a new importance sampling method for pricing basket default swaps employing exchangeable Archimedean copulas and nested Gumbel copulas. We establish more realistic dependence structures than existing copula models for credit risks in the underlying portfolio, and propose an appropriate density for importance sampling by analyzing multivariate Archimedean copulas. To justify efficiency and accuracy of the proposed algorithms, we present numerical examples and compare them with the crude Monte Carlo simulation, and finally show that our proposed estimators produce considerably smaller variances.","PeriodicalId":40006,"journal":{"name":"Journal of Derivatives","volume":"2010 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2009-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Derivatives","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.2139/ssrn.1414111","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 20
Abstract
We introduce a new importance sampling method for pricing basket default swaps employing exchangeable Archimedean copulas and nested Gumbel copulas. We establish more realistic dependence structures than existing copula models for credit risks in the underlying portfolio, and propose an appropriate density for importance sampling by analyzing multivariate Archimedean copulas. To justify efficiency and accuracy of the proposed algorithms, we present numerical examples and compare them with the crude Monte Carlo simulation, and finally show that our proposed estimators produce considerably smaller variances.
期刊介绍:
The Journal of Derivatives (JOD) is the leading analytical journal on derivatives, providing detailed analyses of theoretical models and how they are used in practice. JOD gives you results-oriented analysis and provides full treatment of mathematical and statistical information on derivatives products and techniques. JOD includes articles about: •The latest valuation and hedging models for derivative instruments and securities •New tools and models for financial risk management •How to apply academic derivatives theory and research to real-world problems •Illustration and rigorous analysis of key innovations in derivative securities and derivative markets