Unsupervised Domain Adaptation for Zero-Shot Learning

Elyor Kodirov, T. Xiang, Zhenyong Fu, S. Gong
{"title":"Unsupervised Domain Adaptation for Zero-Shot Learning","authors":"Elyor Kodirov, T. Xiang, Zhenyong Fu, S. Gong","doi":"10.1109/ICCV.2015.282","DOIUrl":null,"url":null,"abstract":"Zero-shot learning (ZSL) can be considered as a special case of transfer learning where the source and target domains have different tasks/label spaces and the target domain is unlabelled, providing little guidance for the knowledge transfer. A ZSL method typically assumes that the two domains share a common semantic representation space, where a visual feature vector extracted from an image/video can be projected/embedded using a projection function. Existing approaches learn the projection function from the source domain and apply it without adaptation to the target domain. They are thus based on naive knowledge transfer and the learned projections are prone to the domain shift problem. In this paper a novel ZSL method is proposed based on unsupervised domain adaptation. Specifically, we formulate a novel regularised sparse coding framework which uses the target domain class labels' projections in the semantic space to regularise the learned target domain projection thus effectively overcoming the projection domain shift problem. Extensive experiments on four object and action recognition benchmark datasets show that the proposed ZSL method significantly outperforms the state-of-the-arts.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"43 1","pages":"2452-2460"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"375","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 375

Abstract

Zero-shot learning (ZSL) can be considered as a special case of transfer learning where the source and target domains have different tasks/label spaces and the target domain is unlabelled, providing little guidance for the knowledge transfer. A ZSL method typically assumes that the two domains share a common semantic representation space, where a visual feature vector extracted from an image/video can be projected/embedded using a projection function. Existing approaches learn the projection function from the source domain and apply it without adaptation to the target domain. They are thus based on naive knowledge transfer and the learned projections are prone to the domain shift problem. In this paper a novel ZSL method is proposed based on unsupervised domain adaptation. Specifically, we formulate a novel regularised sparse coding framework which uses the target domain class labels' projections in the semantic space to regularise the learned target domain projection thus effectively overcoming the projection domain shift problem. Extensive experiments on four object and action recognition benchmark datasets show that the proposed ZSL method significantly outperforms the state-of-the-arts.
零射击学习的无监督域自适应
零射击学习(Zero-shot learning, ZSL)可以看作是迁移学习的一种特殊情况,源领域和目标领域具有不同的任务/标签空间,目标领域没有标签,对知识迁移的指导作用很小。ZSL方法通常假设两个域共享一个共同的语义表示空间,其中从图像/视频中提取的视觉特征向量可以使用投影函数进行投影/嵌入。现有的方法是从源域学习投影函数,并将其应用于目标域,而不适应目标域。因此,它们是基于朴素知识迁移的,学习到的预测容易出现领域转移问题。本文提出了一种基于无监督域自适应的ZSL方法。具体而言,我们提出了一种新的正则化稀疏编码框架,该框架利用目标域类标签在语义空间中的投影对学习到的目标域投影进行正则化,从而有效地克服了投影域移位问题。在四个目标和动作识别基准数据集上进行的大量实验表明,所提出的ZSL方法明显优于目前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信