Morse Index of Multiple Blow-Up Solutions to the Two-Dimensional Sinh-Poisson Equation

IF 0.4 Q4 MATHEMATICS
Ruggero Freddi
{"title":"Morse Index of Multiple Blow-Up Solutions to the Two-Dimensional Sinh-Poisson Equation","authors":"Ruggero Freddi","doi":"10.4208/ata.oa-2020-0037","DOIUrl":null,"url":null,"abstract":"In this paper we consider the Dirichlet problem \\begin{equation} \\label{iniz} \\begin{cases} -\\Delta u = \\rho^2 (e^{u} - e^{-u}) & \\text{ in } \\Omega\\\\ u=0 & \\text{ on } \\partial \\Omega, \\end{cases} \\end{equation} where $\\rho$ is a small parameter and $\\Omega$ is a $C^2$ bounded domain in $\\mathbb{R}^2$. [1] proves the existence of a $m$-point blow-up solution $u_\\rho$ jointly with its asymptotic behaviour. we compute the Morse index of $u_\\rho$ in terms of the Morse index of the associated Hamilton function of this problem. In addition, we give an asymptotic estimate for the first $4m$ eigenvalues and eigenfunctions.","PeriodicalId":29763,"journal":{"name":"Analysis in Theory and Applications","volume":"165 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis in Theory and Applications","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.4208/ata.oa-2020-0037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider the Dirichlet problem \begin{equation} \label{iniz} \begin{cases} -\Delta u = \rho^2 (e^{u} - e^{-u}) & \text{ in } \Omega\\ u=0 & \text{ on } \partial \Omega, \end{cases} \end{equation} where $\rho$ is a small parameter and $\Omega$ is a $C^2$ bounded domain in $\mathbb{R}^2$. [1] proves the existence of a $m$-point blow-up solution $u_\rho$ jointly with its asymptotic behaviour. we compute the Morse index of $u_\rho$ in terms of the Morse index of the associated Hamilton function of this problem. In addition, we give an asymptotic estimate for the first $4m$ eigenvalues and eigenfunctions.
二维Sinh-Poisson方程多个爆破解的Morse指数
本文考虑了Dirichlet问题\begin{equation} \label{iniz} \begin{cases} -\Delta u = \rho^2 (e^{u} - e^{-u}) & \text{ in } \Omega\\ u=0 & \text{ on } \partial \Omega, \end{cases} \end{equation},其中$\rho$是一个小参数,$\Omega$是$\mathbb{R}^2$中的一个$C^2$有界域。[1]证明了一个$m$ -点爆破解$u_\rho$的存在性及其渐近性。我们根据这个问题的相关汉密尔顿函数的摩尔斯指数来计算$u_\rho$的摩尔斯指数。此外,我们给出了第一个$4m$特征值和特征函数的渐近估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
747
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信