Contribution Evaluation of Physical Hole Structure, Hydrogen Bond, and Electrostatic Attraction on Dye Adsorption through Individual Experiments

Wengang Wang, Lei Wang, Ming Zhang, Bo Yu, Xiaoning Li, Han Yan
{"title":"Contribution Evaluation of Physical Hole Structure, Hydrogen Bond, and Electrostatic Attraction on Dye Adsorption through Individual Experiments","authors":"Wengang Wang, Lei Wang, Ming Zhang, Bo Yu, Xiaoning Li, Han Yan","doi":"10.1155/2023/4596086","DOIUrl":null,"url":null,"abstract":"Disagreements over various unanswered questions about contribution of the adsorption process and functional groups on dye adsorption still exist. The main aim of this research was to evaluate the contributions of physical hole structure, hydrogen bond, and electrostatic attraction on dye adsorption. Three ideal representatives, namely, a sponge with porous structure, P(AM) containing -CONH2 groups, and P(AANa/AM) containing -COONa groups, were chosen to evaluate the above contributions. The methylene blue (MB) removal rates of these three products were compared through individual experiments. The results revealed that physical hole structure did not play a role in decreasing dye concentration. Hydrogen bond existed in dye adsorption but did not remarkably reduce dye concentration. The excellent removal results of P(AANa/AM) demonstrated that electrostatic attraction was critical in enriching dye contaminants from the solution into solid adsorbent. The results could provide insights into the dye adsorption mechanisms for further research.","PeriodicalId":7279,"journal":{"name":"Adsorption Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4596086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Disagreements over various unanswered questions about contribution of the adsorption process and functional groups on dye adsorption still exist. The main aim of this research was to evaluate the contributions of physical hole structure, hydrogen bond, and electrostatic attraction on dye adsorption. Three ideal representatives, namely, a sponge with porous structure, P(AM) containing -CONH2 groups, and P(AANa/AM) containing -COONa groups, were chosen to evaluate the above contributions. The methylene blue (MB) removal rates of these three products were compared through individual experiments. The results revealed that physical hole structure did not play a role in decreasing dye concentration. Hydrogen bond existed in dye adsorption but did not remarkably reduce dye concentration. The excellent removal results of P(AANa/AM) demonstrated that electrostatic attraction was critical in enriching dye contaminants from the solution into solid adsorbent. The results could provide insights into the dye adsorption mechanisms for further research.
通过个体实验评价物理孔结构、氢键和静电吸引对染料吸附的贡献
关于吸附过程和官能团对染料吸附的贡献等各种悬而未决的问题仍然存在分歧。本研究的主要目的是评价物理孔结构、氢键和静电吸引对染料吸附的贡献。选择具有多孔结构的海绵、含有-CONH2基团的P(AM)和含有-COONa基团的P(AANa/AM)三个理想代表来评价上述贡献。通过单独实验比较了三种产物对亚甲基蓝的去除率。结果表明,物理孔结构对降低染料浓度没有作用。在染料吸附过程中存在氢键,但不显著降低染料浓度。对P(AANa/AM)的良好去除效果表明,静电吸引是将溶液中的染料污染物富集到固体吸附剂中的关键。该结果为进一步研究染料吸附机理提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信