{"title":"Strong normalization for second order classical natural deduction","authors":"M. Parigot","doi":"10.1109/LICS.1993.287602","DOIUrl":null,"url":null,"abstract":"The strong normalization theorem for second-order classical natural deduction is proved. The method used is an adaptation of the one of reducibility candidates introduced in a thesis by J.Y. Girard (Univ. Paris 7, 1972) for second-order intuitionistic natural deduction. The extension to the classical case requires, in particular, a simplification of the notion of reducibility candidates.<<ETX>>","PeriodicalId":6322,"journal":{"name":"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science","volume":"69 1","pages":"39-46"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"124","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1993.287602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 124
Abstract
The strong normalization theorem for second-order classical natural deduction is proved. The method used is an adaptation of the one of reducibility candidates introduced in a thesis by J.Y. Girard (Univ. Paris 7, 1972) for second-order intuitionistic natural deduction. The extension to the classical case requires, in particular, a simplification of the notion of reducibility candidates.<>