Multi-scale binary geometric feature description and matching for accurate registration of point clouds

Siwen Quan, Jie Ma, Fan Feng, Kun Yu
{"title":"Multi-scale binary geometric feature description and matching for accurate registration of point clouds","authors":"Siwen Quan, Jie Ma, Fan Feng, Kun Yu","doi":"10.1117/12.2540407","DOIUrl":null,"url":null,"abstract":"Point cloud registration in military scenarios is pivotal to automatic object reconstruction and recognition. This paper proposes 1) a multi-scale binary feature representation called mLoVS (multi-scale local voxelized structure) and 2) a “min-pooling” based feature matching technique for accurate registration of tank point clouds. The key insight of our method is that traditional fixed-scale feature matching methods either suffer from limited shape information or data missing caused by occlusion, while the multi-scale way provides a flexible matching choice. In addition, the binary nature of our feature representation can alleviate the increased time budget required by multi-scale feature matching. Experiments on several sets of tank point clouds confirm the effectiveness and overall superiority of our method.","PeriodicalId":90079,"journal":{"name":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","volume":"34 1","pages":"111980L - 111980L-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2540407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Point cloud registration in military scenarios is pivotal to automatic object reconstruction and recognition. This paper proposes 1) a multi-scale binary feature representation called mLoVS (multi-scale local voxelized structure) and 2) a “min-pooling” based feature matching technique for accurate registration of tank point clouds. The key insight of our method is that traditional fixed-scale feature matching methods either suffer from limited shape information or data missing caused by occlusion, while the multi-scale way provides a flexible matching choice. In addition, the binary nature of our feature representation can alleviate the increased time budget required by multi-scale feature matching. Experiments on several sets of tank point clouds confirm the effectiveness and overall superiority of our method.
点云精确配准的多尺度二元几何特征描述与匹配
军事场景中的点云配准是实现目标自动重建和识别的关键。本文提出了一种称为mLoVS(多尺度局部体素化结构)的多尺度二值特征表示和一种基于“最小池化”的特征匹配技术,用于坦克点云的精确配准。该方法的关键观点是传统的固定尺度特征匹配方法存在形状信息有限或遮挡导致数据丢失的问题,而多尺度特征匹配方法提供了灵活的匹配选择。此外,我们的特征表示的二值性可以减轻多尺度特征匹配所增加的时间预算。在几组坦克点云上的实验验证了该方法的有效性和总体优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信