Jing Hu, Tingting Li, Minghua Zhao, Fei Wang, Jiawei Ning
{"title":"A Gated Content-Oriented Residual Dense Network for Hyperspectral Image Super-Resolution","authors":"Jing Hu, Tingting Li, Minghua Zhao, Fei Wang, Jiawei Ning","doi":"10.3390/rs15133378","DOIUrl":null,"url":null,"abstract":"Limited by the existing imagery sensors, a hyperspectral image (HSI) is characterized by its high spectral resolution but low spatial resolution. HSI super-resolution (SR) aims to enhance the spatial resolution of the HSIs without modifying the equipment and has become a hot issue for HSI processing. In this paper, inspired by two important observations, a gated content-oriented residual dense network (GCoRDN) is designed for the HSI SR. To be specific, based on the observation that the structure and texture exhibit different sensitivities to the spatial degradation, a content-oriented network with two branches is designed. Meanwhile, a weight-sharing strategy is merged in the network to preserve the consistency in the structure and the texture. In addition, based on the observation of the super-resolved results, a gating mechanism is applied as a form of post-processing to further enhance the SR performance. Experimental results and data analysis on both ground-based HSIs and airborne HSIs have demonstrated the effectiveness of the proposed method.","PeriodicalId":20944,"journal":{"name":"Remote. Sens.","volume":"14 1","pages":"3378"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote. Sens.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/rs15133378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Limited by the existing imagery sensors, a hyperspectral image (HSI) is characterized by its high spectral resolution but low spatial resolution. HSI super-resolution (SR) aims to enhance the spatial resolution of the HSIs without modifying the equipment and has become a hot issue for HSI processing. In this paper, inspired by two important observations, a gated content-oriented residual dense network (GCoRDN) is designed for the HSI SR. To be specific, based on the observation that the structure and texture exhibit different sensitivities to the spatial degradation, a content-oriented network with two branches is designed. Meanwhile, a weight-sharing strategy is merged in the network to preserve the consistency in the structure and the texture. In addition, based on the observation of the super-resolved results, a gating mechanism is applied as a form of post-processing to further enhance the SR performance. Experimental results and data analysis on both ground-based HSIs and airborne HSIs have demonstrated the effectiveness of the proposed method.