Clustering and knowledge discovery in spatial databases

Xiaowei Xu, Martin Ester, Hans-Peter Kriegel, Jörg Sander
{"title":"Clustering and knowledge discovery in spatial databases","authors":"Xiaowei Xu,&nbsp;Martin Ester,&nbsp;Hans-Peter Kriegel,&nbsp;Jörg Sander","doi":"10.1016/S0083-6656(97)00044-5","DOIUrl":null,"url":null,"abstract":"<div><p>In the past decades, clustering has been widely used in areas such as pattern recognition, data analysis, and image processing. Recently, clustering has been recognized as a useful method for knowledge discovery in spatial databases. To efficiently detect clusters from large spatial databases with a limited amount of available memory, special database techniques have been developed. In this article, we present a survey of these methods from a database perspective.</p></div>","PeriodicalId":101275,"journal":{"name":"Vistas in Astronomy","volume":"41 3","pages":"Pages 397-403"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0083-6656(97)00044-5","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vistas in Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0083665697000445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In the past decades, clustering has been widely used in areas such as pattern recognition, data analysis, and image processing. Recently, clustering has been recognized as a useful method for knowledge discovery in spatial databases. To efficiently detect clusters from large spatial databases with a limited amount of available memory, special database techniques have been developed. In this article, we present a survey of these methods from a database perspective.

空间数据库中的聚类与知识发现
在过去的几十年里,聚类在模式识别、数据分析和图像处理等领域得到了广泛的应用。近年来,聚类已成为空间数据库知识发现的一种有效方法。为了在有限的可用内存下有效地从大型空间数据库中检测集群,已经开发了特殊的数据库技术。在本文中,我们将从数据库的角度对这些方法进行概述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信