INERTIAL-CIRCULATING PRINCIPLE OF SWIMMING AND FLIGHT OF HYDRO- AND AEROBIONTS. PART 1

IF 0.1
A. V. Shekhovtsov
{"title":"INERTIAL-CIRCULATING PRINCIPLE OF SWIMMING AND FLIGHT OF HYDRO- AND AEROBIONTS. PART 1","authors":"A. V. Shekhovtsov","doi":"10.17721/2706-9699.2021.1.27","DOIUrl":null,"url":null,"abstract":"For the case of modeling in the nonlinear ideal formulation of oscillations of an infinitely thin profile of the wing-propulsion, three components of the thrust force coefficient were distinguished - inertial, circulating, and vortex. The contribution to the traction force of each of the obtained components is investigated and the mechanisms of wing traction force formation at different types of oscillations are explained. It is revealed that the inertial-circulating principle underlies the work of the wing-propulsion. The inductive effect of the vortex trail on the traction force is small and negative.","PeriodicalId":40347,"journal":{"name":"Journal of Numerical and Applied Mathematics","volume":"100 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/2706-9699.2021.1.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For the case of modeling in the nonlinear ideal formulation of oscillations of an infinitely thin profile of the wing-propulsion, three components of the thrust force coefficient were distinguished - inertial, circulating, and vortex. The contribution to the traction force of each of the obtained components is investigated and the mechanisms of wing traction force formation at different types of oscillations are explained. It is revealed that the inertial-circulating principle underlies the work of the wing-propulsion. The inductive effect of the vortex trail on the traction force is small and negative.
水氧动物游泳和飞行的惯性循环原理。第1部分
以无限薄翼型的非线性理想振荡模型为例,区分了推力系数的三个分量:惯性、循环和涡。研究了每个获得的部件对牵引力的贡献,并解释了不同类型振荡下机翼牵引力形成的机制。揭示了惯性循环原理是翼推进工作的基础。涡尾对牵引力的感应效应较小,且为负。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信