{"title":"Using Genetic Algorithms to Represent Higher-Level Planning in Simulation Models of Conflict","authors":"James Moffat, S. Fellows","doi":"10.1155/2010/701904","DOIUrl":null,"url":null,"abstract":"The focus of warfare has shifted from the Industrial Age to the Information Age, as encapsulated by the term Network Enabled Capability. This emphasises information sharing, command decision-making, and the resultant plans made by commanders on the basis of that information. Planning by a higher level military commander is, in most cases, regarded as such a difficult process to emulate, that it is performed by a real commander during wargaming or during an experimental session based on a Synthetic Environment. Such an approach gives a rich representation of a small number of data points. However, a more complete analysis should allow search across a wider set of alternatives. This requires a closed-form version of such a simulation. In this paper, we discuss an approach to this problem, based on emulating the higher command process using a combination of game theory and genetic algorithms. This process was initially implemented in an exploratory research initiative, described here, and now forms the basis of the development of a \"Mission Planner,\" potentially applicable to all of our higher level closed-form simulation models.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2010/701904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The focus of warfare has shifted from the Industrial Age to the Information Age, as encapsulated by the term Network Enabled Capability. This emphasises information sharing, command decision-making, and the resultant plans made by commanders on the basis of that information. Planning by a higher level military commander is, in most cases, regarded as such a difficult process to emulate, that it is performed by a real commander during wargaming or during an experimental session based on a Synthetic Environment. Such an approach gives a rich representation of a small number of data points. However, a more complete analysis should allow search across a wider set of alternatives. This requires a closed-form version of such a simulation. In this paper, we discuss an approach to this problem, based on emulating the higher command process using a combination of game theory and genetic algorithms. This process was initially implemented in an exploratory research initiative, described here, and now forms the basis of the development of a "Mission Planner," potentially applicable to all of our higher level closed-form simulation models.