{"title":"The effects of layers orientation on impact energy evaluation of FDM printed specimens","authors":"Iulian-Ionut Ailinei, Sergiu Valentin Galatanu, Liviu Marsavina","doi":"10.1002/mdp2.267","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the effects of layers orientation on impact energy absorbed by acrylonitrile butadiene styrene (ABS) test specimens, obtained by additive manufacturing (AM), having three in-plane deposition directions (0°, 45°, and 90°). The specimens were tested with instrumented Charpy hammer, CEAST 9050 Pendulum Impact System, according to standard ISO179-1. Unnotched specimens were tested in edgewise direction based on measured velocity and impact force; absorbed energy was computed. The average energy obtained during impact tests for specimens with the orientation of the layers at 45° was about 0.39 J. For those with layer orientation at 0° and 90°, respectively, it was 0.63 and 0.81 J. A hinge break failure mode was observed for 0° and 90° specimens, and brittle fracture for 45° specimens.</p>","PeriodicalId":100886,"journal":{"name":"Material Design & Processing Communications","volume":"3 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mdp2.267","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Design & Processing Communications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mdp2.267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper investigates the effects of layers orientation on impact energy absorbed by acrylonitrile butadiene styrene (ABS) test specimens, obtained by additive manufacturing (AM), having three in-plane deposition directions (0°, 45°, and 90°). The specimens were tested with instrumented Charpy hammer, CEAST 9050 Pendulum Impact System, according to standard ISO179-1. Unnotched specimens were tested in edgewise direction based on measured velocity and impact force; absorbed energy was computed. The average energy obtained during impact tests for specimens with the orientation of the layers at 45° was about 0.39 J. For those with layer orientation at 0° and 90°, respectively, it was 0.63 and 0.81 J. A hinge break failure mode was observed for 0° and 90° specimens, and brittle fracture for 45° specimens.