On local antimagic vertex coloring of corona products related to friendship and fan graph

Zein Rasyid Himami, D. R. Silaban
{"title":"On local antimagic vertex coloring of corona products related to friendship and fan graph","authors":"Zein Rasyid Himami, D. R. Silaban","doi":"10.19184/ijc.2021.5.2.7","DOIUrl":null,"url":null,"abstract":"Let <em>G</em>=(<em>V</em>,<em>E</em>) be connected graph. A bijection <em>f </em>: <em>E</em> → {1,2,3,..., |<em>E</em>|} is a local antimagic of <em>G</em> if any adjacent vertices <em>u,v</em> ∈ <em>V</em> satisfies <em>w</em>(<em>u</em>)≠ <em>w</em>(<em>v</em>), where <em>w</em>(<em>u</em>)=∑<sub>e∈E(u) </sub><em>f</em>(<em>e</em>), <em>E</em>(<em>u</em>) is the set of edges incident to <em>u</em>. When vertex <em>u</em> is assigned the color <em>w</em>(<em>u</em>), we called it a local antimagic vertex coloring of <em>G</em>. A local antimagic chromatic number of <em>G</em>, denoted by <em>χ</em><sub>la</sub>(<em>G</em>), is the minimum number of colors taken over all colorings induced by the local antimagic labeling of <em>G</em>. In this paper, we determine the local antimagic chromatic number of corona product of friendship and fan with null graph on <em>m</em> vertices, namely, <em>χ</em><sub>la</sub>(<em>F</em><sub>n</sub> ⊙ \\overline{K_m}) and <em>χ</em><sub>la</sub>(<em>f</em><sub>(1,n)</sub> ⊙ \\overline{K_m}).","PeriodicalId":13506,"journal":{"name":"Indonesian Journal of Combinatorics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19184/ijc.2021.5.2.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let G=(V,E) be connected graph. A bijection E → {1,2,3,..., |E|} is a local antimagic of G if any adjacent vertices u,v ∈ V satisfies w(u)≠ w(v), where w(u)=∑e∈E(u) f(e), E(u) is the set of edges incident to u. When vertex u is assigned the color w(u), we called it a local antimagic vertex coloring of G. A local antimagic chromatic number of G, denoted by χla(G), is the minimum number of colors taken over all colorings induced by the local antimagic labeling of G. In this paper, we determine the local antimagic chromatic number of corona product of friendship and fan with null graph on m vertices, namely, χla(Fn ⊙ \overline{K_m}) and χla(f(1,n) ⊙ \overline{K_m}).
关于友谊和扇子图的电晕积的局部反幻顶点着色
设G=(V,E)为连通图。A喷射f: E→{1,2,3,…,如果任意相邻顶点u,v∈v满足w(u)≠w(v),则|E|}是G的一个局部反魔术,其中w(u)=∑E∈E(u) f(E), E(u)是与u相关的边的集合。当顶点u被赋予颜色w(u)时,我们称其为G的一个局部反魔术顶点着色。G的一个局部反魔术着色数,用χla(G)表示,是由G的局部反魔术标记引起的所有着色所占用的最小颜色数。我们在m个顶点上用零图确定了友扇电晕积的局部反幻色数,即χla(Fn⊙\overline{K_m})和χla(f(1,n)⊙\overline{K_m})。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信