Experimental Investigation on the Leakage Reverse Current Component Flowing at the Semiconductor PN Junction Periphery

V. Obreja, C. Codreanu
{"title":"Experimental Investigation on the Leakage Reverse Current Component Flowing at the Semiconductor PN Junction Periphery","authors":"V. Obreja, C. Codreanu","doi":"10.1109/ESIME.2006.1644014","DOIUrl":null,"url":null,"abstract":"Due to high level of the leakage reverse current, commercial power silicon diodes available at this time have no specification in the data sheets for operation above 200 degC junction temperature. An experimental method is presented to extract information about the uniformity of the reverse current flow over the silicon die area. The power diode with copper attached heat sink is placed in a hot chamber where the temperature is set, so that the level of reverse current to be enough for heat generation. For the same applied power dissipation at reverse and forward bias, the additional junction temperature increase is monitored by the level of reverse current or by the level of the forward current at constant voltage. Experiments have been performed on commercial silicon diode samples in metallic package. It has been found that the additional junction temperature increase is significantly different, when the same power dissipation is applied at reverse bias and then at forward bias voltage, with the device placed in hot chamber at 200degC or 250 degC, depending on the current level","PeriodicalId":60796,"journal":{"name":"微纳电子与智能制造","volume":"52 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"微纳电子与智能制造","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/ESIME.2006.1644014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Due to high level of the leakage reverse current, commercial power silicon diodes available at this time have no specification in the data sheets for operation above 200 degC junction temperature. An experimental method is presented to extract information about the uniformity of the reverse current flow over the silicon die area. The power diode with copper attached heat sink is placed in a hot chamber where the temperature is set, so that the level of reverse current to be enough for heat generation. For the same applied power dissipation at reverse and forward bias, the additional junction temperature increase is monitored by the level of reverse current or by the level of the forward current at constant voltage. Experiments have been performed on commercial silicon diode samples in metallic package. It has been found that the additional junction temperature increase is significantly different, when the same power dissipation is applied at reverse bias and then at forward bias voltage, with the device placed in hot chamber at 200degC or 250 degC, depending on the current level
流动在半导体PN结外围的泄漏逆流元件的实验研究
由于高水平的泄漏反向电流,目前可用的商用功率硅二极管在数据表中没有超过200℃结温工作的规格。提出了一种实验方法来提取硅片上反向电流的均匀性信息。将带有铜散热器的功率二极管放置在温度设定的热室中,使反向电流的水平足以产生热量。在反向偏置和正向偏置下,对于相同的应用功耗,额外的结温升由反向电流水平或恒压下的正向电流水平监测。在金属封装的工业硅二极管样品上进行了实验。已经发现,当相同的功耗在反向偏置电压下和在正向偏置电压下施加时,将器件放置在200℃或250℃的热室中,根据电流水平,额外的结温增加显着不同
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
145
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信