{"title":"On geodesically reversible Finsler manifolds","authors":"Yong Fang","doi":"10.1142/s1793525321500576","DOIUrl":null,"url":null,"abstract":"A Finsler manifold is said to be geodesically reversible if the reversed curve of any geodesic remains a geometrical geodesic. Well-known examples of geodesically reversible Finsler metrics are Randers metrics with closed [Formula: see text]-forms. Another family of well-known examples are projectively flat Finsler metrics on the [Formula: see text]-sphere that have constant positive curvature. In this paper, we prove some geometrical and dynamical characterizations of geodesically reversible Finsler metrics, and we prove several rigidity results about a family of the so-called Randers-type Finsler metrics. One of our results is as follows: let [Formula: see text] be a Riemannian–Finsler metric on a closed surface [Formula: see text], and [Formula: see text] be a small antisymmetric potential on [Formula: see text] that is a natural generalization of [Formula: see text]-form (see Sec. 1). If the Randers-type Finsler metric [Formula: see text] is geodesically reversible, and the geodesic flow of [Formula: see text] is topologically transitive, then we prove that [Formula: see text] must be a closed [Formula: see text]-form. We also prove that this rigidity result is not true for the family of projectively flat Finsler metrics on the [Formula: see text]-sphere of constant positive curvature.","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793525321500576","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A Finsler manifold is said to be geodesically reversible if the reversed curve of any geodesic remains a geometrical geodesic. Well-known examples of geodesically reversible Finsler metrics are Randers metrics with closed [Formula: see text]-forms. Another family of well-known examples are projectively flat Finsler metrics on the [Formula: see text]-sphere that have constant positive curvature. In this paper, we prove some geometrical and dynamical characterizations of geodesically reversible Finsler metrics, and we prove several rigidity results about a family of the so-called Randers-type Finsler metrics. One of our results is as follows: let [Formula: see text] be a Riemannian–Finsler metric on a closed surface [Formula: see text], and [Formula: see text] be a small antisymmetric potential on [Formula: see text] that is a natural generalization of [Formula: see text]-form (see Sec. 1). If the Randers-type Finsler metric [Formula: see text] is geodesically reversible, and the geodesic flow of [Formula: see text] is topologically transitive, then we prove that [Formula: see text] must be a closed [Formula: see text]-form. We also prove that this rigidity result is not true for the family of projectively flat Finsler metrics on the [Formula: see text]-sphere of constant positive curvature.
期刊介绍:
This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.