Einsatz von Deep Learning zur automatischen Detektion und Klassifikation von Fahrbahnschäden aus mobilen LiDAR-Daten / Deep Learning for Automatic Detection and Classification ofRoad Damage from Mobile LiDAR Data

Maximilian Sesselmann, R. Stricker, Markus Eisenbach
{"title":"Einsatz von Deep Learning zur automatischen Detektion und Klassifikation von Fahrbahnschäden aus mobilen LiDAR-Daten / Deep Learning for Automatic Detection and Classification ofRoad Damage from Mobile LiDAR Data","authors":"Maximilian Sesselmann, R. Stricker, Markus Eisenbach","doi":"10.14627/537669009","DOIUrl":null,"url":null,"abstract":"In the context of automated data analysis, convolutional neural networks and the use of deep learning approaches have become state of the art. In the field of road condition assessment and evaluation, the performance of deep neural networks for the analysis of camera image data has already been demonstrated. For the first time, this methodology is to be applied to high-precision mobile LiDAR data of the Fraunhofer Pavement Profile Scanner in the form of 2.5D surface models in order to realize automatic road damage detection and classification on the basis of radiometric and geometric features. Thus, an automated detection of road damage in the form of precisely located geo objects is possible.","PeriodicalId":36308,"journal":{"name":"AGIT- Journal fur Angewandte Geoinformatik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGIT- Journal fur Angewandte Geoinformatik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14627/537669009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the context of automated data analysis, convolutional neural networks and the use of deep learning approaches have become state of the art. In the field of road condition assessment and evaluation, the performance of deep neural networks for the analysis of camera image data has already been demonstrated. For the first time, this methodology is to be applied to high-precision mobile LiDAR data of the Fraunhofer Pavement Profile Scanner in the form of 2.5D surface models in order to realize automatic road damage detection and classification on the basis of radiometric and geometric features. Thus, an automated detection of road damage in the form of precisely located geo objects is possible.
利用深入学习自动侦测并对来自移动LiDAR数据/深入的自动侦测和分类的ofRoad数据造成的损坏进行分类
在自动化数据分析的背景下,卷积神经网络和深度学习方法的使用已经成为最先进的技术。在道路状况评估和评价领域,深度神经网络在摄像机图像数据分析方面的性能已经得到了验证。首次将该方法应用于弗劳恩霍夫路面轮廓扫描仪的高精度移动LiDAR数据,以2.5D表面模型的形式,实现基于辐射特征和几何特征的道路损伤自动检测和分类。因此,以精确定位的地理物体的形式自动检测道路损坏是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AGIT- Journal fur Angewandte Geoinformatik
AGIT- Journal fur Angewandte Geoinformatik Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信