{"title":"Serialized Co-Training-Based Recognition of Medicine Names for Patent Mining and Retrieval","authors":"Na Deng, Caiquan Xiong","doi":"10.4018/ijdwm.2020070105","DOIUrl":null,"url":null,"abstract":"IntheretrievalandminingoftraditionalChinesemedicine(TCM)patents,akeystepisChineseword segmentationandnamedentityrecognition.However,thealiasphenomenonoftraditionalChinese medicinescausesgreatchallengestoChinesewordsegmentationandnamedentityrecognitioninTCM patents,whichdirectlyaffectstheeffectofpatentmining.Becauseofthelackofacomprehensive Chineseherbalmedicinenamethesaurus,traditionalthesaurus-basedChinesewordsegmentation andnamedentityrecognitionarenotsuitableformedicineidentificationinTCMpatents.Inviewof thepresentsituation,usingthelanguagecharacteristicsandstructuralcharacteristicsofTCMpatent texts,amodifiedandserializedco-trainingmethodtorecognizemedicinenamesfromTCMpatent abstract texts isproposed.Experimentsshowthat thismethodcanmaintainhighaccuracyunder relativelylowtimecomplexity.Inaddition,thismethodcanalsobeexpandedtotherecognitionof othernamedentitiesinTCMpatents,suchasdiseasenames,preparationmethods,andsoon. KeyWoRDS Annotation, Co-Training, Machine Learning, Medicine Name, Patent Mining, Patent Retrieval, Traditional Chinese Medicine","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.2020070105","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 2
Abstract
IntheretrievalandminingoftraditionalChinesemedicine(TCM)patents,akeystepisChineseword segmentationandnamedentityrecognition.However,thealiasphenomenonoftraditionalChinese medicinescausesgreatchallengestoChinesewordsegmentationandnamedentityrecognitioninTCM patents,whichdirectlyaffectstheeffectofpatentmining.Becauseofthelackofacomprehensive Chineseherbalmedicinenamethesaurus,traditionalthesaurus-basedChinesewordsegmentation andnamedentityrecognitionarenotsuitableformedicineidentificationinTCMpatents.Inviewof thepresentsituation,usingthelanguagecharacteristicsandstructuralcharacteristicsofTCMpatent texts,amodifiedandserializedco-trainingmethodtorecognizemedicinenamesfromTCMpatent abstract texts isproposed.Experimentsshowthat thismethodcanmaintainhighaccuracyunder relativelylowtimecomplexity.Inaddition,thismethodcanalsobeexpandedtotherecognitionof othernamedentitiesinTCMpatents,suchasdiseasenames,preparationmethods,andsoon. KeyWoRDS Annotation, Co-Training, Machine Learning, Medicine Name, Patent Mining, Patent Retrieval, Traditional Chinese Medicine
期刊介绍:
The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving