The investigation of air temperature characteristics in large-span manufacture area of clean room

IF 1.1 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
Liandong Dong, Ke Zhang, Zhen Qian
{"title":"The investigation of air temperature characteristics in large-span manufacture area of clean room","authors":"Liandong Dong, Ke Zhang, Zhen Qian","doi":"10.1080/14733315.2021.1914917","DOIUrl":null,"url":null,"abstract":"Abstract The main aim of this study is to predict the temperature characteristics in large-span manufacture area of clean room using the Computational Fluid Dynamics (CFD). The CFD model was established based on a large semiconductor plant and verified by measured data. Then, the effects of these factors including fan filter unit (FFU) configuration, building envelope and fresh air system on temperature distribution were analyzed. The results indicate that both increasing FFU air velocity and placement rate can decrease maximum temperature difference. The 33% placement rate has a higher performance-price ratio because the maximum temperature difference differs slightly at 33% and 50% placement rates. The number of FFU can decrease by 415 when placement rate reduces from 50% to 33%. Increasing the thermal resistance of building envelope can also improve the temperature distribution. And changing the thermal insulation properties of roof is more effective than changing that of external wall. So, more attention should be paid to the thermal insulation properties of roof. For fresh air system, fresh air needs to mix well with original air to reduce the effect on temperature. Thus, fresh air inlet port should be inserted into the return air plenum in the design.","PeriodicalId":55613,"journal":{"name":"International Journal of Ventilation","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Ventilation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14733315.2021.1914917","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The main aim of this study is to predict the temperature characteristics in large-span manufacture area of clean room using the Computational Fluid Dynamics (CFD). The CFD model was established based on a large semiconductor plant and verified by measured data. Then, the effects of these factors including fan filter unit (FFU) configuration, building envelope and fresh air system on temperature distribution were analyzed. The results indicate that both increasing FFU air velocity and placement rate can decrease maximum temperature difference. The 33% placement rate has a higher performance-price ratio because the maximum temperature difference differs slightly at 33% and 50% placement rates. The number of FFU can decrease by 415 when placement rate reduces from 50% to 33%. Increasing the thermal resistance of building envelope can also improve the temperature distribution. And changing the thermal insulation properties of roof is more effective than changing that of external wall. So, more attention should be paid to the thermal insulation properties of roof. For fresh air system, fresh air needs to mix well with original air to reduce the effect on temperature. Thus, fresh air inlet port should be inserted into the return air plenum in the design.
洁净室大跨度制造区空气温度特性的研究
摘要本研究的主要目的是利用计算流体力学(CFD)预测洁净室大跨度制造区域的温度特性。基于某大型半导体工厂建立了CFD模型,并通过实测数据进行了验证。分析了风机过滤机组配置、建筑围护结构和新风系统等因素对温度分布的影响。结果表明,增大FFU气流速度和放置率均能减小最大温差。33%的放置率具有更高的性能价格比,因为33%和50%放置率下的最大温差略有不同。当安置率从50%降低到33%时,FFU的数量可以减少415个。增加围护结构的热阻也可以改善温度分布。改变屋面保温性能比改变外墙保温性能更有效。因此,应更加重视屋面的保温性能。对于新风系统,新风需要与原风充分混合,以减少对温度的影响。因此,在设计中应将新风入口插入回风静压室内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Ventilation
International Journal of Ventilation CONSTRUCTION & BUILDING TECHNOLOGY-ENERGY & FUELS
CiteScore
3.50
自引率
6.70%
发文量
7
审稿时长
>12 weeks
期刊介绍: This is a peer reviewed journal aimed at providing the latest information on research and application. Topics include: • New ideas concerned with the development or application of ventilation; • Validated case studies demonstrating the performance of ventilation strategies; • Information on needs and solutions for specific building types including: offices, dwellings, schools, hospitals, parking garages, urban buildings and recreational buildings etc; • Developments in numerical methods; • Measurement techniques; • Related issues in which the impact of ventilation plays an important role (e.g. the interaction of ventilation with air quality, health and comfort); • Energy issues related to ventilation (e.g. low energy systems, ventilation heating and cooling loss); • Driving forces (weather data, fan performance etc).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信