Localization of Voltage Sag Sources Using Convolutional Neural Network in IEEE 34-bus System

W. L. R. Junior, Dyogo M. Reis, F. A. S. Borges, Flávio H. D. Araújo, A. O. C. Filho, R. Rabêlo
{"title":"Localization of Voltage Sag Sources Using Convolutional Neural Network in IEEE 34-bus System","authors":"W. L. R. Junior, Dyogo M. Reis, F. A. S. Borges, Flávio H. D. Araújo, A. O. C. Filho, R. Rabêlo","doi":"10.1109/SMC42975.2020.9283083","DOIUrl":null,"url":null,"abstract":"The increased demand for electricity has caused several problems for traditional electrical power systems, such as voltage fluctuations and interruptions in supply. These events, power quality disturbances, cause several losses for both the concessionaire and its consumers, either by damaging appliances or interrupting their operation. Among these power quality disturbances, the voltage sag stands out for being the most frequent event, causing several losses. Therefore, it is extremely important to locate the source of these disturbances in the electrical distribution system, in order to mitigate the problem. In general, methods for locating disturbances use few electrical meters and an analysis of the characteristics of voltage and current signals, which results in the estimation of a large region as a result. This paper proposes a approach to find not a region, but the bus in the power distribution system in which the voltage sag disorder originated by using a model of deep learning.","PeriodicalId":6718,"journal":{"name":"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","volume":"34 1","pages":"2836-2841"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMC42975.2020.9283083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increased demand for electricity has caused several problems for traditional electrical power systems, such as voltage fluctuations and interruptions in supply. These events, power quality disturbances, cause several losses for both the concessionaire and its consumers, either by damaging appliances or interrupting their operation. Among these power quality disturbances, the voltage sag stands out for being the most frequent event, causing several losses. Therefore, it is extremely important to locate the source of these disturbances in the electrical distribution system, in order to mitigate the problem. In general, methods for locating disturbances use few electrical meters and an analysis of the characteristics of voltage and current signals, which results in the estimation of a large region as a result. This paper proposes a approach to find not a region, but the bus in the power distribution system in which the voltage sag disorder originated by using a model of deep learning.
基于卷积神经网络的IEEE 34总线系统电压凹陷源定位
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信