{"title":"An dynamical evaluation of size-dependent weakened nano-beam based on the nonlocal strain gradient theory","authors":"M. Eghbali, S. A. Hosseini, M. Pourseifi","doi":"10.1177/03093247221135210","DOIUrl":null,"url":null,"abstract":"This paper examines the free lateral vibration of a cracked nano-beam based on Euler-Bernoulli beam theory and nonlocal strain gradient theory (NSGT). Due to the importance and application of nanostructures, their mechanical and mechanical properties are essential. The governing equations and boundary conditions related to using the Hamilton principle have been extracted. The beam separation with the nano-beams division into two parts attached to the Torsion spring is modeled. The model calls the excess strain energy due to crack and increases the discontinuity in the deflection slope. This study investigated the effects of crack propagation, crack intensity, material length scale parameter, and various nonlocal parameters. A comparison of previous studies has been published, where a good agreement is observed. The results show that the parameters mentioned above play an important role in dynamical behavior.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03093247221135210","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
This paper examines the free lateral vibration of a cracked nano-beam based on Euler-Bernoulli beam theory and nonlocal strain gradient theory (NSGT). Due to the importance and application of nanostructures, their mechanical and mechanical properties are essential. The governing equations and boundary conditions related to using the Hamilton principle have been extracted. The beam separation with the nano-beams division into two parts attached to the Torsion spring is modeled. The model calls the excess strain energy due to crack and increases the discontinuity in the deflection slope. This study investigated the effects of crack propagation, crack intensity, material length scale parameter, and various nonlocal parameters. A comparison of previous studies has been published, where a good agreement is observed. The results show that the parameters mentioned above play an important role in dynamical behavior.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.