Geodesics-based statistical shape analysis

Michel Abboud, A. Benzinou, K. Nasreddine, M. Jazar
{"title":"Geodesics-based statistical shape analysis","authors":"Michel Abboud, A. Benzinou, K. Nasreddine, M. Jazar","doi":"10.1109/ICIP.2014.7025962","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a statistical shape analysis founded on a robust elastic metric. The proposed metric is based on geodesics in the shape space. Using this distance, we formulate a variational setting to estimate intrinsic mean shape viewed as the perfect pattern to represent a set of given shapes. By applying a geodesic-based shape warping, we generate a principal component analysis (PCA) able to capture nonlinear shape variability. Indeed, the proposed approach better reflects the main modes of variability of the data. Therefore, characterizing dominant modes of individual shape variations is conducted well through the reconstruction process. We demonstrate the efficiency of our approach with an application on a GESTURES database.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"5 1","pages":"4747-4751"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we describe a statistical shape analysis founded on a robust elastic metric. The proposed metric is based on geodesics in the shape space. Using this distance, we formulate a variational setting to estimate intrinsic mean shape viewed as the perfect pattern to represent a set of given shapes. By applying a geodesic-based shape warping, we generate a principal component analysis (PCA) able to capture nonlinear shape variability. Indeed, the proposed approach better reflects the main modes of variability of the data. Therefore, characterizing dominant modes of individual shape variations is conducted well through the reconstruction process. We demonstrate the efficiency of our approach with an application on a GESTURES database.
基于测地线的统计形状分析
在本文中,我们描述了一种基于鲁棒弹性度量的统计形状分析。所提出的度量是基于形状空间中的测地线。利用这个距离,我们制定了一个变分设置来估计被视为代表一组给定形状的完美模式的内在平均形状。通过应用基于测地线的形状翘曲,我们生成了一个能够捕获非线性形状变化的主成分分析(PCA)。实际上,所提出的方法更好地反映了数据的主要变异性模式。因此,通过重建过程可以很好地表征个体形状变化的主导模式。我们用一个基于手势数据库的应用程序演示了这种方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信