Jongsoo Hwang, Shuang Zheng, M. Sharma, Maria-Magdalena Chiotoroiu, T. Clemens
{"title":"Use of Horizontal Injectors for Improving Injectivity and Conformance in Polymer Floods","authors":"Jongsoo Hwang, Shuang Zheng, M. Sharma, Maria-Magdalena Chiotoroiu, T. Clemens","doi":"10.2118/209373-ms","DOIUrl":null,"url":null,"abstract":"\n Several field cases have demonstrated polymer injection in a horizontal well increases oil recovery. It is important to maintain high injectivity while preventing injection-induced fractures to ensure good reservoir sweep. Our primary goal in this paper is to better understand polymer injection data from horizontal injectors in the Matzen field using a fully integrated reservoir, geomechanics, and fracturing model.\n By simulating polymer injection history, we present several advantages of horizontal injectors over the vertical wells. Horizontal injectors delay fracture initiation and provide better tolerance to polymer plugging on the wellbore surface. Simulations explain the measured PLT data of fluid distributions influenced by accumulated polymer deposition in multiple zones. We show that gradual injectivity decline is attributed to both polymer filter cake buildup and high-viscosity, shear-thickening zones created around the wellbore. The field case simulation also clarifies the flow distribution in different sands and how polymer rheology affects this. This distribution is found to be different than for water injection.\n Results from periodic acid treatments clearly show that free-flowing particles in the polymer solution are responsible for formation damage. Polymer plugging and the viscous pressure drop in the shear-thickening zone are the primary factor affecting the measured injection pressure. Based on the strong near-wellbore viscosity impact, geomechanical simulations identify reservoir zones prone to fracture growth during long-term injection, and we suggest strategies to avoid injection induced fractures that can lead to poor conformance.","PeriodicalId":10935,"journal":{"name":"Day 1 Mon, April 25, 2022","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, April 25, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/209373-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Several field cases have demonstrated polymer injection in a horizontal well increases oil recovery. It is important to maintain high injectivity while preventing injection-induced fractures to ensure good reservoir sweep. Our primary goal in this paper is to better understand polymer injection data from horizontal injectors in the Matzen field using a fully integrated reservoir, geomechanics, and fracturing model.
By simulating polymer injection history, we present several advantages of horizontal injectors over the vertical wells. Horizontal injectors delay fracture initiation and provide better tolerance to polymer plugging on the wellbore surface. Simulations explain the measured PLT data of fluid distributions influenced by accumulated polymer deposition in multiple zones. We show that gradual injectivity decline is attributed to both polymer filter cake buildup and high-viscosity, shear-thickening zones created around the wellbore. The field case simulation also clarifies the flow distribution in different sands and how polymer rheology affects this. This distribution is found to be different than for water injection.
Results from periodic acid treatments clearly show that free-flowing particles in the polymer solution are responsible for formation damage. Polymer plugging and the viscous pressure drop in the shear-thickening zone are the primary factor affecting the measured injection pressure. Based on the strong near-wellbore viscosity impact, geomechanical simulations identify reservoir zones prone to fracture growth during long-term injection, and we suggest strategies to avoid injection induced fractures that can lead to poor conformance.